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Two-dimensional analyses related to wave-energy 
extraction by submerged resonant ducts 
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Department of Applied Mathematics and Theoretical Physics, University of Cambridge 

(Received 9 June 1978) 

Submerged resonant ducts offer an approach to the design of wave-energy extraction 
devices consistent with the need for maximum seaworthiness. This paper gives a full 
account of one type of anaIysis of these systems, based upon two-dimensional wave 
hydrodynamics and linearized duct dynamics. The mathematical analyses are given 
in detail in 2 while 1 describes as concisely as possible (i) the assumptions underlying 
each analysis, (ii) its resuIts and their implications for design, and (iii) any available 
experimental comparisons. 

One theoretical prediction, unexpected when it  was first made but since confirmed 
by experiment (Knott & Flower 1979), is that the effective pressure fluctuations to 
which a resonant duct responds can be substantially greater than those that would 
be present a t  the level of the duct mouth if the duct were absent. Other important 
predictions are concerned with added mass, radiation damping and the conditions 
for optimum energy extraction, calculated below for a wide variety of mouth design 
configurations and internal duct geometries. Broad tentative conclusions from the 
analyses are given a t  the end of 8 1.  
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1. Descriptive 
1.1.  Introduction 

I n  middle latitudes, sources of energy not subject to depletion (the so-called ‘renewable 
resources’) include some which, with maximum availability in winter months, are 
suitable to regions with a winter energy-demand peak. Wind energy is in this category, 
but the wind at any one locality is immensely variable. Fortunately, ocean swell 
(that part of an ocean’s response to winds which propagates over long distances) has 
far less variability (especially in winter) because the local swell energy flux responds 
to a spatially integrated effect of storms over a large oceanic area. 

The significant energy source is not in those surface waves of moderate lengths 
(10-50 m) which may be most obvious to the eye. The swell energy that propagates 
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FIGURE 1. Schematic diagram of the Carey resonant duct. 

over long distances is primarily in waves of length h exceeding 50 m. Indeed, be- 
tween different wave components of a given height and, therefore, given energy per 
unit sea-surface area, the eye is most sensitive to those of moderate lengths because 
they have greatest steepness; yet this energy flux (product of energy per unit area 
with the group velocity (gh/87r)* at which the energy propagates) is substantially 
greater for the ‘swell’ with h > 50 m. 

Many promising projects for extracting energy from ocean swell depend upon 
devices operating where the energy is most readily available: a t  the sea surface. 
Nevertheless, it  remains uncertain whether such surface devices, designed to derive 
energy mainly from storms in other parts of the ocean, can be made ‘seaworthy’ in 
the sense that they are proof against a local storm of particular severity. For this 
reason, a parallel research-and-development programme on the extraction of swell 
energy by devices which, to reduce their vulnerability to local storms, are submerged 
as much as 20 m below the surface, appears desirable. Such a programme, based on 
an invention (Carey & Meratla 1976) by Mr Dennis Carey, is being pursued by Vickers 
Ltd. The project is ultimately based on a quite simple idea, as follows. 

In the Eastern Atlantic, about half of the swell energy flux is contained in waves 
with periods between 7 and 11 s (corresponding to wavelengths between about 80 
and 200 m). From such swell a suitable device, although quite deeply submerged, 
might extract a significant amount of power if it could resonate with a period of 
about 9 s and with enough damping for its frequency response curve to have a breadth 
of t 20 yo. With such an aim in view, certain types of mechanical resonator could be 
well worth pursuing. There is, however, yet another ‘seaworthiness ’ attraction in a 
fixed resonator without any moving parts, such as the Vickers resonant duct. 

Schematically, this can be represented as in figure 1.  The resonating device is 
essentially a U-tube. Normally, however, a water column oscillating in a U-tube has 
air-water interfaces a t  both ends, and the vertical displacements of both interfaces 
contribute gravitational restoring forces that help to fix the resonant frequency. In  
Dennis Carey’s invention, the gravitational rsstoring force is halved because there is 
no air-water interface a t  the end open to the ocean. That end, the ‘mouth’, which 
responds to the pressure fluctuations generated by the swell, need not therefore point 
vertically upwards as it does in figure I .  The resonant frequency, indeed, depends only 
on (i) the water-column length and on (ii) the restoring force at the internal air-water 
interface. 
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To LP turbine 

FIGURE 2. One of many alternative approaches to an engineering design based 
on the idea of figure 1 being pursued by Vickers Ltd. 

We shall, in fact, see that model experiments have exhibited excellent resonance 
also in mouth-downwards and mouth-sideways configurations. Nevertheless, for a 
seaworthy device extracting energy from ocean swell, a mouth-upwards configuration 
has one great advantage: given the need for the whole device to be submerged a t  a 
depth great enough to avoid excessive loads in extreme sea states, we may wish to 
place as high as possible the mouth; that is, the part whose function is to respond, in 
normal sea states, to an ocean-swell pressure distribution that, of course, falls exponen- 
tially with depth. These issues are discussed more quantitatively below in the light of 
the mathematical models developed in this paper. 

The rigid structure containing the air cavity needs to be attached firmly and rigidly 
to the sea bottom. The air cavity’s main function is to supply a gravitational restoring 
force a t  the air- water interface; but the air’s compressibility generates an additional 
restoring force which we may call ‘pneumatic ’. This is due to variations in the internal 
air pressure as the air-water interface rises and falls. That element in the restoring 
force makes the system reminiscent of a Helmholtz resonator. I ts  ratio to the gravi- 
tational element is a t  present expected to be much less than 1, but this ratio remains 
one of the free parameters available to be optimized in an ultimate engineering design. 

The advantages for seaworthiness, inherent in a resonant device without moving 
parts, suggested also the preferred system for energy extraction. This is an ‘over- 
topping ’ system, in which the oscillations of the air-water interface cause ‘overspill ’ 
into a collecting duct that feeds a suitable low-pressure turbine. An overtopping 
system may have the advantage that it limits the amplitude of oscillations in the U- 
tube. The hope is that, under all normal conditions when the Ievel of forcing-pressure 
fluctuations exceeds that able to supply the energy for overtopping oscillations, a high 
proportion of any excess energy may be utilized. In  exceptionally heavy sea states, 
however, large nonlinear effects should de-tune the system so that it does not then 
show an excessive response. 

Figure 1,  as emphasized already, is purely schematic; indeed, a wide choice of 
geometrical configurations is available for the ultimate engineering design. At the 
mouth, however, figure 1 does call for a suitably rounded lip, because energy dissi- 
pation in jet eddies shed from any sharp lip is expected to be undesirably large; an 
expectation confirmed by experiments referred to in 3 1.2. There is, furthermore, the 
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possibility of designing a much fuller bell-mouth geometry in an arrangement like 
that in figure 2. Here, an axisymmetric duct from a well rounded, centrally placed 
mouth divides into an annular duct of the same cross-sectional area and an annular 
air-water interface. There, overtopping would take place into an annular collecting 
duct. This arrangement, with an essentially spherical air cavity, is just one of the 
many alternative approaches to an engineering design now being considered. 

The crudest possible mechanical analysis of a submerged resonant duct is as a 
forced mass-spring system with simple linear damping. The system’s mass M may 
be taken as the average mass of fluid in the U-tube; possibly, with an ‘ added-mass’ 
correction to allow for the open-end effect. The system’s stiffness k is so defined that 
the fluid’s displacement into the duct by a distance X is opposed by a restoring force 
kX, incorporating both gravitational and ‘pneumatic ’ components. The period of 
resonant oscillations is then 

which needs as indicated above to be in the region of 9 s. 

2 4 M / k ) * ,  ( 1 )  

The forcing term is taken as 
Feiwt. , 

that is, as a harmonic component with radian frequency w in the force driving the 
U-tube oscillation. To a first approximation F can be taken as the area of the mouth 
multiplied by the amplitude of pressure fluctuations at  the level of the mouth gen- 
erated by the swell. However, the determination of a more accurate estimate of the 
forcing effect of incident swell on the motions in a submerged resonant duct is one of 
the primary objectives of this paper. 

Among all the features of the very crude mechanical analysis here under discussion, 
the least realistic in detail is the assumption of linear damping. Nevertheless, many 
studies of resonant systems with nonlinear damping have shown that they are well 
represented by a model with a linear damping force DS, provided that the coefficient 
D is so chosen that in each period of the oscillation it gives the same energy loss as in 
the real system. With this in mind we take the damping force as 

where D, and D, are so chosen that in each period of the oscillation 0,s and 0,s 
give energy losses corresponding, respectively, to the extraction of useful energy and 
the net wastage of energy. 

According to the crude analysis given above, the oscillations are governed by the 
equation 

with its classical solution 
MX + (Dl + D,) + kX = Feiwt, (4) 

peht 
X =  

The energy extraction rate (the mean value of Ills2) is then 

(k- Mu2)  + (Dl + D,) iw ‘ 

$ 0 1  I FI 2w2 
(k - Mw2j2 + (Dl + 0,)’ w2 * 

The maximum rate of energy extraction is obtained under the condition of resonance, 

0 = (k /M)* ,  (7) 



Wave-energy extraction by submerged resonant ducts 257 

which makes the period 2n/w equal to  ( l ) ,  and under the additional condition 

D, = D2, (8) 

which equalizes the wanted and unwanted rates of energy extraction. 
This classical model gives the maximum rate of energy extraction as 

I F I ,/ (802) 9 (9) 

inversely proportional to the energy-wastage coefficient D, and directly proportional 
to  the square of the forcing-effect amplitude IF].  Earlier, we suggested that IF1 
should be proportional to  the area of the duct mouth. Therefore, this crude analysis 
tends to  focus attention on one major question: how much can be gained by increasing 
the width of the mouth in relation to other lengths in the problem (including the 
wavelength of the swell) ? The present paper concentrates its main attention on this 
question, put to the author originally by Dennis Carey in October 1977. 

We can now delimit precisely that portion of the whole analysis of the exceedingly 
complex Vickers project to which the present paper is devoted. I n  the first place, 
with all general engineering analysis of the project excluded, this paper is limited to 
fluid-mechanics aspects. Furthermore, out of the three main areas of fluid-mechanics 
research on the project, in which the author is involved either alone or with colleagues, 
the paper is confined to one only; in fact, to the one where researches have reached the 
point where publication has become appropriate. 

Thus, we exclude here one major area of research, where the author’s colleague Dr 
M. A. Swinbanks is especially involved; namely, the fully nonlinear fluid-mechanics 
analysis of resonant oscillations in a U-tube with energy extraction by overtopping. 
The present paper, in fact, will be limited to a treatment in which all energy-loss 
terms are represented as above by equivalent linear damping coeEcients. The paper 
concentrates, instead, on the interactions between submerged resonant ducts and 
incident swell, and analyses the ensuing oscillations only as far as a linearized treat- 
ment of the energy-loss effects will allow. Studies which make use of the present 
calculations on duct-swell interactions as inputs to  a fully nonlinear analysis of U- 
tube oscillations with overtopping are postponed to later papers. 

Methods of analysis of the fluid mechanics of duct-swell interactions, furthermore, 
can be separated into two main types of method. For various reasons to be discussed 
below, two-dimensional models of the wave hydrodynamics of duct-swell interactions 
are highly informative. Furthermore, the classical method for solving two-dimensional 
hydrodynamic problems, based on conformal mapping, proves extremely powerful 
in this area, allowing very full and detailed analyses to be made. When all those 
analyses, together with satisfactory experimental checks, had been completed, i t  
seemed appropriate to publish the material as a whole in the present paper. By con- 
trast, because parallel work on three-dimensional models of the wave hydrodynamics, 
using quite different methods, is in an only partially developed state, publication of 
any of that  work is, for the time being, postponed. 

I n  this paper, then, several two-dimensional models relevant to experiments on 
the interaction between surface waves and resonant ducts are described, analysed 
and applied. For the convenience of readers uninterested in the details of analysis by 
conformal-mapping methods, the following section ( 5  1.2) gives a straightforward 
description of the assumptions underlying each model and of d l  the quantitative 
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results derived from its use. Also, 9 1.2 makes improvements on the above mechanical 
description of the oscillations generated in the duct in several different ways (except 
that, as explained above, it continues to represent energy-loss terms by equivalent 
linear damping coefficients); for example, it calculates the effect of taper in the duct. 
Actually, the linearized dynamics of the duct motions is given in a form equally 
applicable to a two-dimensional or to a three-dimensional system. However, three 
quantities in that analysis (a forcing-pressure factor, an added-mass term and a 
radiation damping) need to be calculated from surface-wave theory, results of which 
are given here only for two-dimensional systems. 

For power generation in the neighbourhood of a coastline on which a statistically 
uniform swell energy flux (in kW/m) is incident, we could imagine a truly two- 
dimensional realization of the scheme shown in figure 1, greatly extended in the 
direction perpendicular to the paper; that  is, parallel to  the coastline. Admittedly, 
it seems likely that consideration of the necessary civil engineering costs would give 
preference to a linear array of three-dimensional ducts, uniformly spaced parallel to 
the coast1ine.f Nevertheless, the behaviour of such an array may have much more in 
common with a purely two-dimensional system than with the completely three- 
dimensional behaviour of (say) an isolated duct. Again, tests of an isolated duct in 
waves propagated along a narrow wave tank may involve behaviour similar to that 
of a linear array of ducts, uniformly spaced perpendicular to  the sides of the tank, 
with a strong two-dimensional component in the resulting response. These are reasons 
for paying serious attention in this paper to the results of two-dimensional analyses; 
some more such reasons are given in $1.2.  

We have emphasized that a practical duct mouth must have rounded lips (figures 
1 and 2) to reduce unwanted energy dissipation in jet eddies generated by flow sep- 
aration a t  sharp lips. Nevertheless, the results of any analysis of a sharp-lipped duct 
by use of irrotational-flow theory, which permits no separation or energy dissipation, 
may be highly relevant to the real use of a duct using rounded lips to avoid dissipation; 
just as we know that the theoretical irrotational flow past an aerofoil with sharp 
leading edge gives a good representation of the general flow field about a real aerofoil 
with its leading edge sufficiently rounded to avoid separation. With these consider- 
ations in view, most of the analysis in this paper is for mathematical models of irro- 
tational flow in and around sharp-lipped ducts; although we include one study (see 
figure 24) of the special effects of such a highly rounded bell-mouth as that illustrated 
in figure 2. 

In  addition to mouth-upwards models relevant to systems sketched in figures 1 
and 2, we consider also mouth-sideways and mouth-downwards models, partly because 
various mouth arrangements are conceivable and it is still too early to finalize a 
choice between them. Also, certain experiments on mouth-downwards systems are 
particularly easy and afford a convenient test of resonant-duct principles and of 
associated theory. 

Readers with a strictly practical interest in the fluid mechanics of submerged 
resonant ducts will find everything that they can obtain from this paper set out as 
concisely as possible in $1.2,  to which they are now recommended to turn. Only 
those interested in details of the wave hydrodynamics for its own sake will wish to 
study its analysis by conformal mapping given in $32.1 and 2.2. 

t Possibly, with connected air cavities. 
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Here, we acknowledge briefly that the method used ‘was pioneered especially by 
Levine & Rodemich (1958). Also, one of the quantities which we calculate (the re- 
flexion coe%cient for a mouth-upwards two-dimensional sharp-lipped duct without 
oscillating flow in the duct) had previously been derived by that method in a different 
form by Jarvis (1971), who gave extensive graphs of its computed values. I n  the 
present paper, all calculated quantities are expressed in terms of confluent hypergeo- 
metric functions; all of these have been found easy to  compute using the rapidly 
convergent series for those functions; all, too, are readily expressible in terms of 
functions tabulated by Macdonald (1949), which was continually helpful as a check 
on the work. It is noteworthy also that a key aspect of the duct energetics is found to 
depend [see equation (192)] on a property of the Wronskian of two solutions of the 
confluent hypergeometric equation. 

Between the full analysis of the highly accurate although inevitably complex two- 
dimensional swell-duct interaction theory given in § 2.2, and the brief stat,ements of 
the results and their applications (including some satisfactory comparisons with 
experiment) given in $ 1.2, we have an intermediate section ($2.1) .  This is concerned 
with a simpler type of model which we call a local ’ model. Although it is less accurate, 
it has the advantage that the calculations can be made ‘in a few lines ’ (although they 
still use conformal mapping) and can be carried out successfully even for complicated 
geometries, such as bell-mouths. Local models are described for these reasons and 
because comparisons with the accurate ‘fully interactive’ theories of $2.2  lead us to 
appreciate the conditions under which the conclusions from them can be relied upon. 
We emphasize again, however, that, for every model, readers of $1.2 alone will derive 
a sufficiently clear picture of its assumptions, results and uses. 

1.2. Description of models : assumptions, results, uses 

For resonant ducts responding to incident swell, one important question has been 
indicated already in $1.1: as t h e  duct width increases (for given wavelength), how 
will the effective forcing-pressure amplitude change ‘1 This question presupposes an 
expected fact (actually proved in $2.2) regarding motions in a very narrou) duct: 
that they are driven by forcing pressures with the same amplitude as the pressure 
fluctuations found a t  the level of the mouth when the duct is absent. For wider ducts, 
that  amplitude is presumably modified, by a modification factor which we call K. 
One might expect that  K < 1 (in other words, that this modification is a reduction) 
on the grounds that a wide duct ought to be sensitive to a sort of averaged pressure 
distribution; that  is, to an average of those sinusoidally distributed pressures that 
would be felt across the area actually occupied by its mouth, if the duct were absent. 

To test the correctness or otherwise of that expectation, a two-dimensional model 
appears particularly appropriate. Clearly, a two-dimensional model of the response 
of a vertical duct to waves will analyse how a channel, with parallel plane vertical 
walls, responds to waves with crests parallel to those walls. Any reduction in forcing- 
pressure amplitude due to  averaging should be even more marked for such a ‘two- 
dimensional duct’ than for an axisymmetrical duct of the same width (in waves of the 
same wavelength). Therefore, the following calculations from two-dimensional models 
which indicate for many interesting cases that K > 1 (so that the modification rep- 
resents an amplification, rather than a reduction, of forcing effect) strongly suggest 
that in axisymmetrical ducts a similar conclusion should be valid. 
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FIGURE 3. The mouth-upwards 'local' model seeks to determine how the pressure 
in the 'depths' D of the duct shown responds to the far field (10). 

The calculation is performed first for a preliminary, highly simplified model of the 
type that we call a 'local' model. Local models can be analysed very simply indeed, 
and all the local models we use are worked out in detail in the relatively short section 
2.1. 

The model is concerned (figure 3) with how a two-dimensional channel of width nh 
(where 0 < n < 1) responds to far-field pressurest 

p ,  = (Poe2"?l /A)  &"iZ/A, (10) 

varying exponentially with y and sinusoidally with x as in waves on deep water with 
wavelength A. Here, p ,  stands for excess pressure (excess over the hydrostatic pressure 
distribution); the origin is a t  the centre of the duct mouth and the y axis is vertically 
upwards. Evidently, p o  would be the excess pressure a t  the centre of the mouth 
(x = y = 0) if the duct were absent; for waves of length h on deep water i t  must fluc- 
tuate with a radian frequency 

and, indeed, must be proportional to e+iut for waves travelling in the +x direction. 
We calculate the forcing-pressure modification factor 

w = (27rg/A)&,  (11)  

K = PDIPO, (12) 

where p ,  is the excess pressure sensed in the depths D of the duct. 
This model suffers from the defect that  it regards the far field (10) as extending 

indefinitely far from the duct mouth, whereas the true pressure distribution (10) 

in ( lo) ,  we mean that p ,  is equal to that expression's real part. 
t In this section, wherever we eq~iate a physical quantity like pe to a complex expression as 
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n 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
K 1 1.302 1.448 1.492 1.445 1.315 1.116 0.864 0.584 0.284 0 

TABLE 1 

I I 
I I 

I I 
I I 
I I 

FIGURE 4. The local model in the case n = 0.5 is concerned with a far field which at  the level 
of the duct mouth would follow the dotted curve, varying between - p a  and + p , ;  yet, it pre- 
dicts that the duct responds with an internal pressure 1.315 p,. 

extends only up to the free surface, a t  which special boundary conditions need to be 
applied. In  short, this is a ‘local’ model: it calculates the duct’s response to the local 
distribution of pressure (lo),  and ignores any back-reaction of the presence of the 
duct on conditions a t  the free surface. This model also assumes zero flow in the duct. 
Although we soon replace it by a model free of both these restrictions, there are ad- 
vantages in obtaining some preliminary information about the modification factor 
(12) from a model so simple that its physical significance can be easily probed. 

Evaluation of this factor K is extremely straightforward for the local model ( 9  2.1) 
and yields already some rather surprising numerical results, shown in table 1.  Although 
considerations of averaging (see above) would be expected to make K < 1 ,  we find 
that, for a useful range of values of the ratio n of duct width to wavelength, the modi- 
fication factor K exceeds unity. 

Figure 4 re-emphasizes the surprising nature of this conclusion, by an iIlustration 
for the case n = 0.5. The dotted line represents the sinusoidal distribution of the 
excess pressure (10) that (with po positive) would be present a t  the level of the duct 
mouth if the duct were absent. This has maximum p o  a t  the centre of the mouth and, 
furthermore, it  actually falls to zero a t  both lips; yet the duct responds with an excess 
pressure 1-315 p, .  

We can interpret this physically by studying the mathematical processes used in 
the model. The reason why the presence of the duct modifies the far-field pressure 
distribution (10) is that gradients of that pressure distribution generate accelerations 
which are blocked by the duct walls. In  figure 4, for example, we see that the far field 
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involves pressure gradients at the duct walls which tend to produce accelerations 
outwards (from the inside of the duct towards the outside). Evidently, the duct would 
prevent any such normal accelerations from occurring; indeed, in the mathematical 
model, we calculate the modifying pressure field (tending to zero far from the duct) 
which must be added to that far field to cancel those outward accelerations on the 
duct walls. Physically, then, the calculation is equivalent to saying that the vertical 
duct walls, by blocking any outward acceleration that the gradients of the far-field 
pressure distribution would otherwise produce, re-direct a substantial additional 
pressure downwards into the depths of the duct, where accordingly a pressure response 
in excess of po can be found. 

For some rather more refined physical discussion of the numerical values of K in 
table 1, see 3 2.1. It turns out that K is the product of two factors. One of these does 
exactly allow for an averaging across the duct of the sinusoidal distribution of far- 
field pressures. The other can be interpreted in terms of the idea that a duct responds, 
not directly to the pressures at  the level of its mouth, but rather to pressure distri- 
butions at  a level ‘beyond’ (in this case, above) its mouth; no doubt, because only a t  
that level do pressure distributions avoid such a blocking action of the duct walls. 
To state briefly the results of a lengthy discussion of local models, a, two-dimensional 
duct of width around &A, Qh, $A or $A is found to respond, essentially, to pressure a t  
distances of about 0.5, 0.4, 0.3 or 0.2 duct widths, respectively, beyond its mouth. 

Either physical interpretation tends to confirm the view that a vertical duct with 
its mouth upwards can be effective even when the duct width is a significant fraction 
of the wavelength. Indeed, forcing-pressure amplitudes may be still greater in a wide 
duct than in a narrow one, as well as acting over a greater area. This suggestion that 
wide ducts may respond effectively encourages us to explore whether similar con- 
clusions are valid for more realistic models. 

Fortunately, calculations proved possible also with a far more refined (although 
still two-dimensional) model. This takes full account of the duct’s interaction with 
the free sea-surface, where the usual (linearized) boundary condition is applied 
exactly. It also takes into account the dynamics of the internal fluctuating flows with 
which the duct responds to the forcing pressures. For such ‘fully interactive’ models 
in general, see 32.2; here, we describe only the model’s assumptions, results, and uses. 

We consider incident swell with the sinusoidal free-surface waveform 

1. (13) a ei(ot-rtx 

Here, 2a is the crest-to-trough height of the waves. For the free-surface condition to 
be satisfied with waves on deep water, the wavenumber K = 27r/h must be equal to 
02/g as in (1 1) .  We calculate the irrotational flow field representing the duct’s response 
to an incident wave of the general sinusoidal form (13). Such a calculation, of course, 
will allow us to infer its behaviour in a wave system of arbitrary spectrum. 

The duct’s mouth is taken to be at  a depth h below the surface, and the duct is 
again taken as a vertical channel of width nh (figure 5) with its walls at  x = gnh. 
The excess pressure p o  which would be found at  the centre of the duct mouth if the 
duct were absent is then 

po = (pgae-2nhlh ) ,  e i w t  (14) 

showing the classical exponential dependence on depth. 
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FIUURE 5 .  The fully interactive model for the mouth-upwards case seeks to determine how the 
pressure in the 'depths' D of the duct responds to the incident swell (13). 

Although the duct by no means consists only of vertical elements, but rather is 
more of the nature of a U-tube (figure l) ,  we assume that the bend in the tube occurs 
a t  a level far enough below the mouth for the exponential decay of wave pressures 
and motions with depth to make its influence negligible (figure 5 ) .  The wave-hydro- 
dynamics problem is solved, then, with an essentially vertical duct disturbing the 
incident waves (13). We determine the pressure a t  a point D which we may still think 
of as being in the 'depths' of the duct; however, that pressure already has a very 
simple, well defined form, for a given flow rate in the duct, provided that D is a t  least 
two duct widths below the level of the mouth. (This is where the velocity distribution 
across the duct width has become uniform.) Afterwards, we do a separate calculation 
of the duct dynamics, in which the motions in the U-tube are determined given its 
detailed geometry and this relationship between the pressure at D and the flow rate 
in the duct. 

We proceed immediately to give the results obtained by solving the wave-hydro- 
dynamics problem in the above fully interactive model. For clarity, we present these 
results in two stages. In  the second stage, we give results when there is flow in the 
duct. I n  the first stage, however, we give results corresponding to the case (treated 
previously with the local model) of zero flow in the duct. In  other words, we first 
present results for the case 'when the duct is not working'. 

In  that case, the model gives the excess pressure p D  in the depths D of the duct in 
a form 

(Ke-ia)po. (15) 

Here, K is as before the modification factor, defined as the ratio of the forcing-pressure 
amplitude (pol to the amplitude lpol of pressures a t  the level of the mouth if the duct 
were absent. The quantity a (positive and rather small, for all cases here calculated) 
is the phase lag with which the pressure fluctuations a t  D respond to those that would 
occur at the centre of the mouth if the duct were absent. The form 

obtained by combining (15) and (14), should make the above interpretations still 
clearer. 

The variation of K with the ratios n and h/A (of duct width and mouth depth, 
respectively, to the wavelength A )  is the most important of the model's outputs. 
That is why we display it graphically in three different ways. 
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FIGURE 6. The pressure modification factor K in the mouth-upwards case, plotted as a function 
of the ratio n of duct width to wavelength for different values of the ratio hlh of the mouth 
depth to wavelength. Curves : fully interactive theory. Experimental points (Knott & Flower 
1979): 0, h/A = 0.3; A, h/h = 0.2; X ,  h/A = 0.15. 

Figure 6 shows how K varies with n for five different values of h/h. Because the 
prime motive for using submerged resonant ducts is to avoid the risks which devices 
close to the free-surface wave motions may incur, we exclude values of h/h less than 
0.1. Conversely, values greater than 0.4 are excluded; essentially, because pressure 
fluctuations are hardly strong enough to be effective a t  a depth of 0.5h (where the 
exponential factor in (14) is 0.043) even after amplification by resonance effects. 

For all five values of h/h there is quite a substantial range of values of n for which 
K > 1.  It extends to n = 0.25, 0.31, 0.37, 0.46, 0.53 for h = 0.1, 0.15, 0.2, 0-3, 0.4, re- 
spectively. The margin by which K exceeds 1 is significant, although not so large as 
was indicated in the values for the local model given in table 1.  However, values quite 
close to those are found for the larger values of h/h. 

The fully interactive model confirms, then, the a t  first sight surprising conclusion 
that the modification factor K can exceed unity for interesting values of n; although, 
for this purpose, it  directs attention to rather smaller values of n (around 0.2) than 
does the local model. The curves in figure 6 were shown a t  a Society for Underwater 
Technology seminar on 6 January 1978, and within three weeks one of the partici- 
pants, Dr G. Knott, had used the wave tank a t  the University of Sussex to derive 
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FIGVRE 7.  The pressure-modification factor K ,  plotted in the mouth-upwards case as a function 

of the depth-wavelength ratio h/h for different values of the width-wavelength ratio n. 

experimental values of K for the two-dimensional case of deep-water waves incident 
upon a parallel-sided vertical channel. Pressure fluctuations a t  a point corresponding 
to D in figure 5 were measured by a pressure transducer while an electromechanical 
gauge measured the undisturbed wave height. Values of K as defined by (16) were 
calculated from the data. The excellent agreement with the theoretical curves (figure 6) 
gives general support to the mathematical method used in this paper, and confirms 
the qualitative conclusion that forcing-pressure amplification can occur. For full 
details of the experiments, see Knott & Flower (1979). 

Figure 7 gives an alternative plot of K ,  as a function of h /h  for five different values 
of n. This re-emphasizes that for many interesting values of h/h the maximum forcing- 
pressure amplitude is found for values of n around 0.2. 

Often, of course, we may be interested in how the behaviour of a particular duct 
configuration, as specified by its ‘aspect-ratio’ hlnh (mouth depth over duct width), 
changes in waves of varying lengths. Figure 8 gives graphs of K for three constant 
aspect-ratios hlnh, equal to 0.5, 1 and 2. The last two values (with mouth depth either 
equal to the duct width, or twice as great) give values of K significantly greater than 
1 for all n < 0.5. 

The curve marked co represents the values of K given by the local theory (table 1 
above, or $2.1 below) which, indeed, is proved in $2.2  to constitute a valid limit of 
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the fully interactive theory as the aspect-ratio hlnh becomes large. This was expected 
because a local model regards the free surface as essentially ‘ a t  infinity ’ and therefore 
is valid in the limit as the distance h to the free surface becomes large compared with 
the duct width. Actually, figure 8 shows that the results given by the local theory are 
already sufficiently accurate for most purposes when hlnh 

Although, in the present zero-flow case (when ‘the duct is not working’), by far 
the most interesting quantity which we can calculate from the model is K, nevertheless 
the values of certain other quantities are worth recording. One of these is the ratio 
between the strengths of symmetric and antisymmetric components of the flow field 
near the mouth of the duct. 

We find, in fact, that the disturbance-flow field generated by the interaction of the 
incident swell arid the duct is a linear combination of two modes: one symmetric 
and one antisymmetric. However, the antisymmetric mode generates no excess 
pressure in the depths D of the duct; thus, for all n, the pressure (15) depends solely 
on the strength of the symmetric disturbance to the flow field. Indeed, that  pressure 
(15) can be regarded as a suitable measure of the strength of this symmetric component. 
The corresponding strength of the antisymmetric component can be written 

2. 

The extra phase term in reflects the fact that  the antisymmetric component responds 
to  horizontal (forward) motions in the incident-wave field, which have a phase lead 
of in over those vertical (downward) motions to  which the symmetric component 
(15)’ corresponds. The correction a1 (positive, like a, and rather small for all the cases 
here calculated) represents a small phase lag in response to those horizontal motions. 
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FIGURE 9. The predicted 'maximum asymmetry ratio' for lip flows, K , / K ,  plotted as a function 
of the depth-wavelength ratio h/h  for different values of the ratio n of duct width to wavelength. 

The relative importance of the antisymmetric and symmetric components is indi- 

K I P  (18) 
cated by the ratio 

of their amplitudes. Actually, we can show that this 'asymmetry ratio ' (18) compares 
the antisymmetric and symmetric components in terms of the strengths of the lip 
JEows (figure 9). Here we use the idea, well established in aerofoil theory, that a cal- 
culated irrotational-flow pressure distribution near a sharp edge gives a good measure 
of the true flow strength around a practical rounded edge; together with the fact that 
the ratio ( 1  8) is the calculated vaIue of the limiting ratio of amplitudes of antisym- 
metric and symmetric motions as the lip is approached.? 

Figure 9 shows that this asymmetry ratio is slightly greater than 1 for n = 0.1 but 
quickly becomes much smaller as n increases; finally, for n = 0.5, the motions become 
perfectly symmetrical. Actually, the corresponding studies when the duct is working 
show that the antisymmetric lip-flow strength is then unchanged, but the symmetric 
lip-flow strength is increased, so that the quantity plotted in figure 9 can be described 
as a maximum asymmetry ratio. 

t Note, however, that the phase difference between the antisymmetric and symmetric 
motions is fn+a-a,,  implying by figure 10 that the moments in the cycle when the sym- 
metric and antisymmetric motions attain their maxima are about 90" out of phase. 
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FIGURE 10. The phase lags OL and a1 in the symmetrical and antisymmetrical components of 
duct response in the mouth-upwards case, plotted as functions of the width-wavelength ratio 
n for different values of the depth-wavelength ratio h/A. Lower graph: deduced values of the 
ratio R of reflected energy to incident energy in circumstances when there is no flow in the duct. 

Figure 10 plots both the phase lags which have been referred to: the lag a for the 
duct pressures p ,  associated with the symmetric motion, and the lag a1 for the anti- 
symmetric motions. Both remain quite small, and for h/h > 0.3 become insignificant. 

One more quantity of interest can be obtained from the model for the case of zero 
flow in the duct, though values of this quantity have previously been computed by 
Jarvis (1971). Our results agree with his; and, also, with the following general form 
for the proportion R of incident wave energy which is reflected; a form known to 
apply to wave reflexion by any two-dimensional system with one symmetric and one 
antisymmetric degree of freedom (Newman 1975). This is the formula 

R = sin2 (a- al) ,  (19) 

which when applied to  the values of a and a1 calculated in terms of confluent hyper- 
geometric functions in $2.2 gives results (figure 10) that are in numerical agreement 
with those computed differently by Jarvis. 

Figure 10 shows that, for the values of n and h/h of interest here, the two-dimen- 
sional submerged duct without flow reflects rather little energy: less than 23 yo, 9 yo 
or 3% for h/h = 0.1, 0.15 or 0.2 respectively. Furthermore, where the curves for the 
phase lags a and a1 cross over (that is, where n is about 0.14), the proportion R of 
reflected energy actually falls to  zero. 

This result, found also previously by Jarvis (1971), has, in addition, been checked 
experimentally (Knott & Flower 1979) for h/h = 0.15 and 0.2. Figure 11 compares the 
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FIGURE 11. Comparison of the theoretically predicted reflexion coefficient R, in circumstances 
when there is no flow in the duct, with experimental data (Knott & Flower 1979) as follows: 
A, h/h = 0.2; X ,  h/h = 0.15. 

experimental points with expanded versions of those two theoretical curves from 
figure 10. Once more, excellent agreement is found. The generally encouraging results 
from applying the theory when ‘the duct is not working’ spur us on to study the 
theory also in the case when the duct responds to the forcing pressures with a non-zero 
fluctuating flow. 

We prepare for that with a brief reminder of how the excess pressure pe  (excess 
over the hydrostatic value) is distributed in a duct incorporating a fluctuating volume 
flow. We take this volume flow, directed into the duct from the mouth, as given by 
the complex exponential 

with amplitude Q,. We give the results in a form which is valid also in a three- 
dimensional duct, for which (20) has dimensions m3 s-l. When used with two-dimen- 
sional models, however, (20) will be the volume flow per unit breadth (called the 
volume flux in the detailed theory of $2.2),  with dimensions m2 s-l. 

We develop the analysis for a duct whose cross-sectional area A(s) (or, for two- 
dimensional models, area per unit breadth) may exhibit a gradual variation with 
distance s measured along the centre-line from the mouth (figure 12). One reason for 
allowing such varia.tion will be found to be its value in resonant-duct design for en- 
suring that a duct resonates a t  a frequency corresponding to the peak swell-energy- 
flux frequency a t  its destined location. 

First, we give results according to a linear theory with every source of internal 
damping (whether due to energy extraction or to friction) neglected. The volume flow 

Q, eiWt (20) 

(20) implies a mean velocity 
Q, [ A  (s)]-l eiWt 

at the cross-section A ( s ) ,  and therefore, on linear theory, an acceleration 

ioQ, [ A  (s)]-l eiwt. (22) 
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FIGURE 12. Schematic diagram of a resonant duct with tapered cross-section. 

Then the gradient ( - ape/&) of excess pressure along the duct equals the density p 
times this fluid acceleration, giving 

pe  = constant -piwQ, IOs [A(s) ] - lds )  e i w t .  i 

p ,  = Kecimp,, - pwQ, ( i  D, + i [ A  (O)]-l I + Jos [~(s) l - lds))  e i w t .  

(23) 

We find that the results of hydrodynamic analysis of the interaction of incident 
swell with duct motions can be set out most clearly by expressing the constant in (23) 
as a sum of three separate terms, as follows: 

(24) 

Here, the first term is the response already calculated in the case Q, = 0,  and the 
other two terms are ‘open-end’ corrections. Thus 1 is the effective added length of duct, 
due to ‘added mass’ of water outside its mouth s = 0. Also, we assign to  D, (which is 
found to be necessarily positive) the name radia,tion damping coeflicient. 

Note that, although internal damping has been neglected, a well-defined external 
damping is provided by such a positive coefficient D, in (24) generating suctions 
(-p,)  a t  the mouth in phase with the volume flow. These extract energy from the 
duct motions at a rate 

frpwDr I Qu I ’. ( 2 5 )  

I n  an irrotational-flow theory, the only possible mechanism for external loss of energy, 
of course, is by the fluctuating flow in the duct generating new surface waves; and 
we verify in $2.2 that  the fluctuating flow by itself does indeed radiate surface waves 
with energy flux (25). 

Inspection of (24) shows that we have defined the radiation damping coefficient 
D, so that, although for three-dimensional systems it has the dimensions m-l, never- 
theless for two-dimensional systems (with &, and A(s)  as volume flow and cross- 
sectional area per unit breadth) D, is dimensionless. Calculation of its value for 
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FIGURE 13. Radiation damping coefficient D ,  for mouth-upwards duct, calculated on two- 
dimensional theory as a function of the width-wavelength ratio n for different values of the 
depth-wavelength ratio hlh. This coefficient D, is defined so that the energy radiated in new 
surface waves takes the form (25) per unit breadth, when the duct volume flow per unit breadth 
oscillates with amplitude Q,. 
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FIGURE 14. Added-mass curves in the mouth-upwards case, giving the ratio Zlnh of the effective 
added length of duct to the width nh of the duct mouth, as a function of the ratio h/h of mouth 
depth to wavelength. 
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FIGURE 15. The data of figure 14 re-plotted as a function of the aspect-ratio h/nh, and compared 
with the added-mass curve for a simplified problem with gravity neglected. 

two-dimensional systems (52.2) shows, in fact, that  D, is related to  the forcing- 
pressure modification factor K plotted in figures 6, 7 and 8 by the simple equation 

D, = (Ke--2nh/h)2. (26) 

Equation (26) is a special case of the general reciprocal theorem which fixes the re- 
lation between the response of a symmetrical two-dimensional system to incident 
waves and the generation of waves by symmetrical oscillations of that system (New- 
man 1975; Evans 1976). Values of D, calculated from (26) are plotted in figure 13; 
see later for a detailed study of their implications. 

I n  certain well-known (for example, acoustical) cases, open-end corrections are 
found to involve, not only such radiation damping, but also a substantial added- 
mass component. By contrast, in the present problem, the effective added length of 
duct 1 turns out to be negligibly small for the most interesting values of the par- 
ameters. Thus, figure 14 shows that with hlh between 0-1 and 0-2, and n between 0.2 
and 0.5, the ratio llnh of added length to duct width lies between - 0.2 and + 0.2. 

By studying the mathematical theory leading to this conclusion we can discern 
one important reason underlying it: above all, the proximity of the free surface (at 
which the duct mouth is pointing) restricts the added length. Already from the 
solution of a rather elementary added-mass problem (figure 15) we can partially 
understand this. It is the problem with gravity neglected, when the free surface, as 
a surface of zero excess pressure, acts already to  limit the possible build-up of negative 
excess pressure in the duct in phase with downward acceleration. I n  this problem 
the added mass is half of that  associated, in unbounded fluid, with a certain anti- 
symmetrical problem : one in which the duct operates together with its mirror-image 
in the free surface (whose inflow acts in antiphase). The ratio llnh is then a simple 
function (figure 15) of the aspect-ratio hlnh alone, which falls t o  zero as that aspect- 
ratio becomes small (allowing the flow to shoot back and forth between the duct and 
its image). 
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The fully interactive theory shows that when gravity is taken into account the 
added mass is necessarily reduced below the above-mentioned simple value with 
gravity neglected; presumably, because gravity restricts the motions of the free 
surface. Figure 15 shows how this reduction brings down the value of Zlnh in cases 
of particular interest to the numerically low levels mentioned earlier. 

Now, we can turn to the dynamics of motion in the duct; again, with all internal 
damping neglected. This requires (figure 12) that we relate the excess pressure (24) 
a t  the internal air-water interface s = sz to the motions of that interface. These have 
velocity (21) and therefore displacement 

&, [iwA (sz)]-l eiwt. (27) 

If the air a t  the interface were a t  constant absolute pressurep, then the excess pressure 
p ,  = p +pgy  (excess over hydrostatic) would exhibit fluctuations equal to pg times 
the fluctuating displacement (27) of the interface. We take, however, 

pe = pg.+Q, [iwA(s,)]-l eiWt at s = sz, (28) 

where g+ is equal to the gravitational acceleration g plus a 'pneumatic-stiffness' 
correction due to any fluctuations in the pressure p of the air itself. 

Actually, we can express the correction g, - g  in terms of the capacitance C of the 
air cavity. Here, C is the product of the air's volume (or, in two-dimensional models, 
volume per unit breadth) and its compressibility; thus, C specifies the air's volume 
reduction per unit increase of pressure. The displacement (27) produces an increase 

G'-1&,(iw)-1 eiwt (29) 

in air pressure (C-1 times the associated volume reduction). Therefore, the excess 
pressure p ,  = p +pgy exhibits the fluctuation (28) with 

9, = 9 + (pC)-lA(sz). ( 30) 

In  practical designs the pneumatic-stiffness correction g, - g is expected to represent 
only a small proportional addition to the gravitational acceleration g. 

Equating (28) to the value of (24) for s = sz gives 

Here, in the large parentheses, we have a fixed real part 0, (the radiation damping) 
and an imaginary part which varies with the duct's internal geometry. Therefore, 
the amplitude I&,I of volume-flow fluctuations is a maximum when the length s1 of 
the water column and the variation in duct cross-section A(s) for 0 < s < s1 satisfy 
the resonance condition, specified by equating to zero that imaginary part (the 
contents of the braces). At resonance, then, 

Equation (32) is potentially useful for design purposes because it suggests how a 
duct of given overall length sz can be tuned to respond maximally to a desired 

I0 FLH 91 
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frequency as suggested by the swell-energy-flux spectrum at its destined location. 
Actually, we have seen that the added-mass correction 1 and the pneumatic-stiffness 
correction g+ - g are small, and we can explain the design approach most clearly if 
we temporarily neglect them. Then, (32) shows that a duct of uniform cross-section 
A (s) would be limited to a water-column length sI = gw--2, giving for example sz = 20 m 
for a 9 s wave period 2nw-l. In  practice, any strict limitation to a particular value of 
the water-column length to achieve resonance at a particular wave period (such as 
9 s) might conflict inconveniently with other design requirements. Use of a non- 
uniform cross-section, however, could avoid such conflict. 

Thus, (32) also shows that increasing the duct length would not necessarily violate 
resonance provided that the duct were given sufficient taper. Then, A ( s )  would be 
made a gradually decreasing function of s so that (if we again neglected 1 and g, - g) 
the quantity 

4,) /34(s)l-”s (33) 

would take the desired value go-’. Physically, we would be compensating for excess 
‘hydraulic inertia ’ in an over-long duct by using taper to provide extra ‘ hydraulic 
stiffness’; that is, extra gravitational restoring pressures associated with given volume 
displacements a t  the internal air-water interface. 

Under the condition of resonance, (31) becomes 

Ke-jap0 = poQaD,, 1341 

so that the volume flow (20) is in phase with the forcing pressures (15). Then the rate 
(25) of energy radiation by the duct motions is exactly equal to the rate of energy 
input by the forcing pressures. Thus, as with resonant systems in general, the resonant 
response Qa adjusts its phase so that it can gain maximum energy from the forcing 
effect, and its amplitude so that energy gain and energy loss are in balance. 

When internal damping (whether by frictional effects or by energy extraction, or 
both) is taken into account, we can again assume that the resonant response satisfies 
the same energy balance condition. Here, we express that condition formally as if 
both frictional damping and energy extraction were governed by linear damping 
coefficients, with the energy loss rate for volume flow QaeiWt given by 

4~wDf I Qa I 2, 4~wD1 I Q a  I (35) 

respectively, in addition to the loss (25) by radiation damping. Then the energy 
input (rate of working by forcing pressures (15) in phase with volume flow) balances 
the sum of the energy loss rates (25) and (35): 

giving 

while the energy extraction rate &wDl I Q a I  becomes 

(36) 

(37) 

As in 9 1.1, we find under these assumptions of linear damping that the energy 
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extraction is greatest when the wanted and unwanted energy loss rates are equal; 
that is, when 

The maximum energy extraction rate, achieved under this condition, is 

D,  = D,+D,. (39) 

We can compare this with the rate of energy flux in the incident waves (13 ) ,  equal to 
their wave energy density Qpga2 per unit horizontal area times their energy propa- 
gation velocity &gw-l (that is, their group velocity, which is half their phase speed). 
Dividing the power extracted (40) ,  with expression ( 1 4 )  for po ,  by this incident power 
tpg2a2w-1, we obtain 

- Dr - 
power extracted (Ke-2RhlA)2 
incident power 2(D, + D,) 2(Dr + D,) 

- - 

Here, we have used expression (26) for D,. 
When the frictional damping D, is neglected, (41) agrees with a general law 

for two-dimensional wave-energy extraction devices with fore-and-aft symmetry, 
analysed on frictionless linear theory (Evans 1976) : the maximum energy extraction 
rate is half the incident wave-energy flux (see also 5 2 . 2  for yet another derivation of 
this result). Evans's law follows from the general reciprocal theorem which (in its 
application to the present problem) gives (26) ,  making the radiation damping coef- 
ficient D, equal to the square of the duct response coefficient Ke-2nn/h. In  the frictionless 
case, this means that the apparent advantage of increasing the forcing-pressure 
modification factor K is exactly counterbalanced by the resulting increase in D,. 

A different picture emerges, however, when we take into account additional effects, 
beginning with the frictional damping. Then (41) implies a further requirement for 
optimal energy extraction: the condition 

Dr > D f ,  ( 4 2 )  

which requires the radiation damping to be so much larger than the frictional damping 
that the frictionless upper limit 0.5 of the ratio ( 4 1 )  is almost reached. The require- 
ment ( 4 2 )  has two sides to it. One is the need to reduce D, by every possible means, 
including especially the use of rounded lips, or a bell-mouth, to minimize frictional 
dissipation in jet eddies shed from sharp orifice lips (see below). After that has been 
done, however, satisfaction of condition (42) may still require that (26) is sufficiently 
large. This condition in turn, after hlh has been made large enough to meet the 
requirements for seaworthiness, emphasizes the importance of K2 being as big as 
possible. 

It is a t  first sight paradoxical that, according to a two-dimensional model, energy 
extraction may be made more effective by having the radiation damping as big as 
possible. The reason, of course, lies in the necessary truth of the reciprocal relationship 
(26) between radiation damping and the square of the forcing-pressure amplitudes. 
Given only condition (42), that the radiation damping is made large compared with the 
frictional damping, then the reciprocal relationship allows the full frictionless opti- 
mum (one-half of the incident swell energy flux) to be extracted. (Under those cir- 
cumstances, as shown in 3 2.2, the other half is re-radiated equally in both directions.) 

10-2 
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FIGURE 16. Specimen graphs, based on linear damping coefficients, giving the fraction of in- 
cident swell energy flux captured by & two-dimensional system with mouth width nA equal to 
the mouth depth h and with duct width tapering to 9 m at the internal interface. The period 
T takes the value 9 s a t  resonance. Parts of curves corresponding to wavelengths A > 10h are 
shown dotted. 

A (m) 

The theory indicates also a second advantage in D, being relatively large. Whatever 
be the frequency of the peak in the swell-energy-flux spectrum, there is a substantial 
band of frequencies around it within which the average swell energy flux takes values 
within (say) 50 yo of the peak. An effective device for wave-energy absorption must 
have a sufficiently broad-band response to be able to absorb a significant fraction of 
the energy a t  those frequencies also. This, in turn, calls for a large enough value for 
the total damping, which under conditions (39)  and (42) is essentially 2 0 , .  

A specimen calculation, leading to a very rough numerical idea of this requirement 
as indicated by two-dimensional linear theory, may be given by taking the resonant 
period once more as 9 s and taking A(s,) in (31)  as 9 m, with g+ as 11 m r 2 .  Then, 
as the wave period in seconds, T = 2nw-1, varies, the expression in braces in (31) ,  
with - 0.031T2 as its last term, must be equal to 

\ 

0.03 1 (Tg - T 2 ) ,  (43)  

since it vanishes when T takes its resonant value TR = 9. Adding this imaginary part 
t o  a total real damping coefficient now increased to 2Dr is found to reduce the pro- 
portion of swell energy flux extracted from & to 

D,/{(2D,)2 + [0*031(T&- T2)I2}*. (44)  

Here, the term in square brackets varies by rf: 1 as T ,  the wave period in seconds, 
varies between 7 and 10.6. At the ends of that frequency band, then, the proportion 
of swell energy flux extracted will fall only from fr to provided that D, is around 0.3. 
This suggests that a submerged resonant duct may need to operate a t  values of the 
radiation damping coefficient around 0.3 if it is to be sensitive to a broad enough 
spectrum of swell energy flux. Figure 13 shows how this tends to fix h/h between 0.1 
and 0.15 and n between 0 and 0.25. 
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FIGURE 17. A simple ‘ mouth-downwards ’ experiment to test resonant-duct principles. 

For a particular duct, however, we cannot regard D, as fixed since h varies as a 
function of wave period. Figure 16 takes this into account by showing how the pro- 
portion (44) of swell energy flux extracted varies with T for a duct with aspect-ratio 
hlnh = 1 at various values of the depth h (equal in this case to the mouth width nh). 
Parts of the curves for which h < O-lh, with’ the duct mouth perhaps undesirably 
near the surface for waves of the wavelength concerned, are shown dotted. 

Although the assumptions underlying figure 16 are somewhat arbitrary, so that 
the absolute values have no significance, the figure does give a broad feel for the 
problems involved in the choice of the mouth depth h. Placing the mouth too deep 
could make the resonance curves too narrow, while placing it too near the surface 
could make it dangerously sensitive to the longer waves. These considerations may 
suggest some kind of compromise in the general neighbourhood of h = 20 m. 

One extensive series of experiments to test resonant-duct principles has been con- 
ducted with an extremely simple, but inverted, system. This makes use of a mouth- 
downwards configuration. An open vertical tube (figure 17) with its lower end, the 
‘mouth’, inserted to a certain depth h in a travelling sinusoidal wave, resonates for a 
particular value of h, producing very large peak amplitudes of oscillation aR of the 
water level in the tube (greatly exceeding the corresponding amplitude a in the wave). 
It is easy to measure how the amplitude at  resonance varies with wavelength, wave 
amplitude, duct width, etc. At a more sophisticated level of experimentation, the 
upper end of the tube in figure 17 can be placed in a chamber a t  reduced air pressure 
(which raises the undisturbed level in the tube), in order to test the behaviour of an 
overtopping system. To obtain theoretical insight into both types of experiment, a 
mouth-downwards analysis directly comparable to the mouth-upwards analysis 
described above has been made. 

The whole mouth-downwards analysis turns out to be surprisingly similar to that 
in the mouth-upwards case. Indeed, in the simple version described earlier as a ‘local’ 
model and found to be a good approximation for large aspect-ratio hlnh, the only 
change needed is a substitution of ( - n )  for n ( $ 2 . 1 ) .  The forcing-pressure modifi- 
cation factor K then takes the values shown in table 2; essentially, the values of the 
function in table 1 with n replaced by - n. 

This time, K is seen to be a true ‘reduction factor’. We can understand this in 
terms of the quite different geometries characterizing the two cases. The mouth- 
downwards duct itself excludes the entire region of substantial pressure fluctuations 
that would otherwise be present above its mouth; therefore, it  must respond primarily 
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?I 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
K 1 0.755 0.646 0.575 0.524 0.484 0 4 5 2  0.426 0.404 0.384 0.368 
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FIGURE 18. The pressure modification factor K ,  and the associated phase lead --a, plotted in 
the mouth-downwards case against the ratio hlh of the mouth depth to wavelength for different 
values of the width-wavelength ratio. Broken lines: asymptotic values given (table 2) by the 
' local ' model. 
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E’IUURE 19. Radiation damping coefficient D, for a mouth-downwards duct, calculated on two- 
dimensional theory as a function of the  width-wavelength ratio n for different values of the 
ratio hlh of mouth depth to  wavelength (compare figure 13 in the  mouth-upwards case). 
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FIGURE 20. Added-mass curves in the mouth-downwards case 
(compare figure 14 in the mouth-upwards case). 

to pressures immediately outside the duct. The local model supports this view by 
predicting that the forcing pressures in the duct are in phase with those which would 
be found at the position of the l i p  nearest the incident waves if the duct were absent. 
Thus the quantity a, defined in (15) as the phase lag of the forcing pressure behind 
the pressure which would be found at the position of the duct centre if the duct were 
absent, takes the negative value ( - n ~ )  corresponding to a phase lead (the waves 
would reach the nearest lip before reaching the centre). In addition, the tendency 
noted earlier for a duct to respond to pressures ‘beyond’ (here, below) its mouth 
contributes to making K < 1. 

In the mouth-downwards case, the fully interactive model ( 5  2.2) gives results 
even closer to those of the local model than in the mouth-upwards case. Figure 18 
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FIGURE 21. The ratio l/nh, of effective added length of duct to mouth width, plotted in the 
mouth-downwards case as a function of the aspect-ratio h/nh (ratio of mouth depth to duct 
width), and compared with the added-mass curve for a simplified problem with gravity neglected. 

shows the values of K as a function of hlh for n = 0.1, 0.2, 0.3, 0.4 and 0.5, together 
with the asymptotic values given by table 2. It shows also the phase lead (-a) 
tending still more rapidly to the asymptotic values n7r (marked, this time, on the 
vertical scale). Broadly speaking, the local theory gives sufficient accuracy now when 
the aspect-ratio h/nh exceeds 1 (instead of 2 for the mouth-upwards theory). 

The low values of the forcing-pressure modification factor K in figure 18 produce a 
still greater reduction in the radiation damping coefficient D,, given as before by 
(26). Figure 19 plots D, as a function of n for hlh = 0.1, 0.15, 0.2 and 0.3, and these 
values can be compared with the much larger values in figure 13 for the mouth-upwards 
case. We earlier noted reasons why relatively large values of D, may be needed in 
practical applications of resonant ducts: optimal energy capture may require D, to 
be large compared with the corresponding frictional damping coefficient Df ; while 
substantial values of D, (around 0.3) may be required for a broad enough resonance 
curve. Figure 19 hardly encourages, therefore, any attempt to devise practical sys- 
tems based on a mouth-downwards configuration. 

Yet another difference between the two configurations lies in the magnitudes of 
the added mass. Figure 20 shows the effective additional length of tube 1 (see (24) 
above) as a fraction ZlnA of the duct width. The values predicted are significantly 
higher than in the mouth-upwards case (figure 14), especially for the most interesting 
values of hlh Q 0.2. 

We can understand this new feature by studying the corresponding elementary 
added-mass problem with gravity neglected. Then the value of Ilnh is just a function 
of the aspect-ratio hlnh as in figure 15 but its values are already much higher (figure 
21) than in the corresponding mouth-upwards problem. Physically, this is because 
the duct is now pointing away from the free surface. This change essentially explains 
the difference between the two configurations, since figures 15 and 21 show the 
reductions due to gravity to be comparable. Although our mouth-downwards model, 
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FIGURE 22. Experimentally determined ratios l/nh of effective added length of duct to mouth 
width, determined (Carey, unpublished) for the simple mouth-downwards experiment of figure 
17. Curves: theory of figure 10. Points: 0, a/h = 0 * 0 2 5 0 ; b ,  a / h  = 0.0139; x ,  a / h  = 0.0111; 
L, a / h  = 0.0104; 0, a / h  = 0.0045; b, a / h  = 0.0042; 1, a / h  = 0.0023. 

like all models in this paper, is two-dimensional, such broad quantitative comparisons 
which it suggests are probably applicable also to three-dimensional ducts, where we 
can similarly expect pressure modification factors K considerably less than 1, to- 
gether with substantial added-mass effects. 

Confirmation of this last conclusion comes from the simple experiment illustrated 
in figure 17. The condition (32) for resonance, with g ,  = g and with the tube area 
A (s) constant, becomes 

g ~ - ~  = s,+Z = h + l ,  (45) 

since in the experiment of figure 17 the distance sI from the duct mouth to the internal 
air-water interface is equal to the mouth depth h. Therefore, by observing the depth 
h a t  which resonance to waves of frequency w occurs, we can determine the added 
length from (45) as 

(46) 

Values of the ratio llnh so determined for different values of hlh less than = 0.159 
were found (figure 22) to be mainly clustered in the region 0-3-0.5, as predicted by 
two-dimensional theory (figure 20) in that range of hlh. 

From such experiments it is possible also to infer information about damping, by 
measuring the amplitude aR by which the level in the tube varies about its undisturbed 
position under resonant conditions. The two-dimensional model predicts the value of 
a, from (37), in which the volume-flow amplitude 

1 = gw-2 - h = (h/27~) - h. 

/&,I = Unh, where U = waR (47) 

is the velocity amplitude. With zero energy-extraction coetficient D, and with po  as 
in (la), (37) then gives 

pw(D, + D f )  (wuR) (nh) = Kpgae-2nh’A, (48) 
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which with u2h = 2ng as in (1 1) implies that 

27rn(D,+ D,) aR = (Ke-2nh/A) a + 0 . 4 ~ .  (49) 

Here, even for a circular tube (figure 17)) the forcing-pressure modification factor K 
might be expected to diverge relatively little from its value on two-dimensional 
theory. In  that case, the product Ke-2nhlh turns out to be close to 0.4 in the present 
experiments, because increasing n makes the value of llh increase, so that, by (46)) 
h/A decreases; actually, in such a way that the effects on Ke-2nhlk practically cancel. 
On that assumption, measured values of the amplitude ratio ./aR might be used in 
(49) to infer D, + D,. 

Here D,, while more likely than K to depart significantly from its two-dimensional 
value,t should nevertheless be independent of amplitude, while Df should increase 
with amplitude. This suggests that their values could be separately found if the 
experiment were repeated for several values of the wave amplitude. 

Specifically, we defined D, in (35 )  so that frictional dissipation of energy occurs at 
an average rate 

It is interesting to test the hypothesis that with a sharp-lipped tube the frictional 
dissipation occurs mainly in jet-like eddies shed from the lip in outflow and, possibly, 
also in an inflow phase involving lip separation. In a two-dimensional model this 
would make the average dissipation rate (50) proportional to the average flow of 
kinetic energy across the mouth; that is, to the average of 

&JJD, IQaI z*  (50 )  

$p( U cos ut)2 I U cos utl nh (51) 

with the velocity amplitude U given by (47). Putting (50) equal to (51) multiplied 
by a coefficient f3 < 1, we get 

#pwDf( Unh)2 = +pU3nh(4/37r) 8, ( 5 2 )  

D,(nh) = aR(4/37r) 8, (53)  

where 4/37r is the average of lcos utI3. Thus, 

confirming the dependence of D, on amplitude. 
We can conveniently test our hypothesis by plotting all measurements of aR in 

the form of graphs of hala, against an for fixed tube width nA.  The theoretical 
relations (49) and ( 5 3 )  would suggest that 

ha/a, = 57r[D,(nh) + ( 4 0 1 3 ~ )  a,], (54) 

making such graphs for different tube widths nh into straight lines, all of the same 
slope Zj'-0 but with different intercepts (57rD,nh) on the axis a, = 0. Results of ex- 
periments shown in figure 23 do in fact strongly suggest a common slope for the graph 
of haIan against an for each of five different tube widths nh = 61, 45.5,  30, 19.5 and 
9-3 cm. Just the three ringed points were so much out of line with nearby data that 
they were ignored. A least-squares fit to the remaining points by five lines of identical 
slope, shown on the diagram, gave a satisfactory interpretation of all those data, 
and determined this slope, equal to 2$%' according to the theory; as 6.0, making 

e = 0.9. (55) 

t Because its value is no longer tied to that of K by the reciprocal relationship (26). 



Wave-energy extraction by submerged resonant ducts 283 

1.44 nh 

nh = 

61 cm 

45.5 crn 
120 - 

100- 

30 cm 

80 - 
19.5 crn 

h 

5 
v 

IY 
60- 9.3 cm 

2 

40 - 

20- 

1 I 
I I I I I 1 

0 1 2 3 4 5 6 I 

aR (cm) 
FIGURE 23. Experimentally determined values (Carey, unpublished) of ha/aR for waves of 
amplitude a and length h incident upon a mouth-downwards vertical cylinder as in figure 17, 
for different values nh of the cylinder’s diameter: 0, nh = 61 cm; 0, nh = 45.5 cm; A, 
nh = 30 cm; V ,  nh = 19.5 cm; L, nh = 9.3 cm. The three ringed points were so much out 
of line with nearby data that they were discarded. The straight lines represent a least-squares 
fit to  the remaining points by lines of identical slope for each value of nh. This slope is 6.0. 
The inset diagram plots the intercept of these lines on the vertical axis aR = 0 as a function 
of the cylinder diameter nh, showing that this intercept remains close to 1.44nh. In summary, 
the data are well represented by an equation ha/aR = 1.44nh + 6 . 0 a ~ .  

This means that practically all of the kinetic-energy flow across the mouth (both 
outwards and inwards) is dissipated in jet eddies. The conclusions do also imply that 
boundary-layer dissipation was negligible compared with jet-eddy dissipation, since 
their ratio should be proportional to the aspect-ratio hlnh, and the above slope was 
found insensitive to variation of hlnh by an order of magnitude. 

The intercepts in figure 23 are close to a constant multiple 1.44nh (see inset) of the 
tube width nh. From (54) this implies a radiation damping coefficient 

0, = 1 * 4 4 / 5 ~  = 0.09. (56) 

This is just over half the value of radiation damping, D, = 0.16, which in a strictly 
two-dimensional system would follow by (26) from the value 0.4 which we have taken 
for Ke-2nhlA. There is, in fact, no need for the relationship (26) between the two coef- 
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FIGURE 24. Two bell-mouth shapes ( b )  and (c), for which a two-dimensional ‘local’ theory gives 
a pressure-modification factor varying with K as shown (curves b and c). The corresponding 
sharp-lipped mouth, (a ) ,  has values of K given (on the same theory) in table 1, represented here 
by curve (a).  

ficients to hold for an axisymmetric duct, even in a wave tank with vertical side walls. 
It is interesting, however, that an extensive body of data on that system for a wide 
range of values of n can be interpreted by use of a constant radiation damping coef- 
ficient, just over half that appropriate on two-dimensional theory. 

One important, although not unexpected, conclusion from the set of experiments 
just described and their analysis, was that sharp lips are a potent source of energy 
dissipation associated with separation both of the outflow and of the inflow a t  the 
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lips. More recent experiments, to be reported in later papers, imply that Df may be 
reduced by more than a factor of 10 through the use of suitably rounded lips. Then 
the dominance of frictional dissipation at the larger amplitudes disappears. 

When a wide bell-mouth is used, these recent experiments have indicated that even 
the limiting value of the resonant amplitude a, for zero frictional damping is aug- 
mented. This suggested an analysis of whether the forcing-pressure modification 
factor K might be increased by use of a bell-mouth. Fortunately, it proved possible 
to calculate this ($2.1)) within the limitations of a ‘local’ model, with results shown 
in figure 24. For values of n around 0.2, a bell-mouth shape rather similar to that in 
the project sketch of figure 2 produces (on this admittedly crude theory) a consider- 
able augmentation of K which may prove to be significant. 

One more special configuration is studied by means of a local model in $2.1. This 
is a mouth-sideways duct with the mouth facing the swell. The conclusion from the 
analysis is simply that the forcing pressures to which such a duct is sensitive are 
those which (in the absence of the duct) would be found at a level between 20 and 
25 yo of the duct width below the duct’s upper lip. Even so, it may still be too soon to 
rule out mouth-sideways configurations, because they could lead to economical 
simplifications of duct geometry. 

Nevertheless, the broad tentative conclusions from analyses in this section tend 
to favour a configuration something like that in figure 2, with a bell-mouth, at a 
mouth depth of around 20 m. The duct width might also be around 20 m (to utilize 
the high values of K for values of n from 0.1 to 0.2); but taper (that is, duct cross- 
sectional area A(s)  reducing as the distance s from the mouth increases) should be 
used to help fix the resonance period at 9 s. Suggestions from experiments that 
frictional damping could be made negligible and radiation damping reduced to about 
half its two-dimensional value indicate that practically all the swell energy incident 
upon such a duct might be captured. 

2. Analytical 
2.1. Local models of forcing-pressure modi$cation 

This section is concerned with a simple preliminary model of forcing-pressure modi- 
fication which ignores interaction between the duct and the free surface. Such a 
‘local’ model is of value for the mouth-upwards duct because it shows ‘in a few lines’ 
why the modification need not be a reduction but can be an amplification. Quanti- 
tatively, the results turn out to be a valid asymptotic limit of the fully interactive 
theory ($2.2) when the ratio h/nh of mouth depth to duct width is large; and they 
are sufficiently accurate when h/nh 2 2. 

The corresponding local model in the mouth-downwards case leads to an equally 
brief calculation suggesting why the modification must in that case be a reduction. 
This latter calculation is open, as we shall see, to apparently grave objections regarding 
convergence; yet, the full theory taking into account interaction with the free surface 
shows that the local model is again a valid limit for large hlnh and, indeed, is already 
sufficiently accurate when h/nh > 1.  Lastly, the success of a local model in both 
these cases encourages us to use a local model also to estimate the modification’factor 
for a ‘ mouth-sideways ’ configuration, which would not lend itself to treatment by 
a fully interactive theory, and for a ‘ bell-mouth’ arrangement. 
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FIGURE 25. Diagram illustrating, for ‘local’ models, the z plane and its 
transformation (64) into the 2 plane. 

A local theory is concerned, essentially, with how the duct mouth responds to  the 
fluctuating pressure distribution in its close neighbourhood. It regards all other 
influences, such as the free surface and the bend in the U-tube, as so remote from the 
duct mouth that, mathematically, they are ‘a t  infinity’. Then the geometry of the 
problem is reduced to that of a semi-infinite duct in otherwise unbounded fluid (figure 
25). 

The present model, like all others in this paper, is two-dimensional in that the duct 
is taken as the channel between two plane parallel walls. The fluctuations of excess 
pressure inside it are calculated for the case of zero duct flow. Nothing would be gained 
by seeking to incorporate modifications due to  duct flow in this model, since for 
example a.dded mass must be logarithmically infinite for a two-dimensional duct in 
otherwise unbounded fluid. 

The fluid dynamics is expressed most economically in terms of a velocity potential 
Q and stream function $, where for zero duct flow we can take the boundary condition 
8 S  

$ = 0 on both duct walls: x = 5 @A, y < 0.  (57) 

Here, the origin is taken a t  the centre of the duct mouth (figure 25) .  
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Far from the duct mouth (which for a ‘local ’ model means ‘at infinity’) the complex 
potential 

is given the ‘far-field’ value 
#+i$ = f ( x + i y )  = f ( z )  

fm(z) = fOe-2nidheznY/h = fOe-2niz/h (59) 

varying sinusoidally with x and exponentially with y as in waves on deep water. 
Here, fo is the value which f (z )  would have a t  the centre of the mouth if the duct were 
absent. We seek to determine fD = f ( -  im), the purely real value of the complex 
potential in the ‘depths’ of the duct (where (57) implies that $ = 0 )  as the real part,t 

of a multiple 
When the 

f D  = Re (Ke-iafo), (60) 
of this value fo. 
far field fm(z) is a sinusoidal wave travelling in the +x direction, fo is 

necessarily proportional to eiwt, where w satisfies (1 1). The complex potential f(z), 
representing the duct’s response to that far field, is then also a multiple of eiwt, so 
that the definition (60) of Ke-ia agrees with the earlier definition (15) in terms of the 
excess pressure p,. In  fact, 

p ,  = -pa#/at = Re[-piwf(z)]; (61) 

accordingly, Ke-ia can be thought of as the ratio of the complex quantities 

-piwKe-iafo and -piwfo 

(each proportional to eiwt) whose real parts are, respectively, the excess pressure in 
the depths of the duct and the excess pressure at the centre of the duct mouth if the 
duct were absent. 

The ‘ local-model ’ problem is readily solved by ti conformal mapping. The Schwarz- 
Christoffel rule for mapping the inside of any polygon in the z plane on to the upper 
half Z plane is to write 

dz /dZ  = Cn(2-  c)(’-”)/~; (62) 

this product n includes a term for each finite point Z = c on the real axis correspond- 
ing to a vertex where the interior angle of the polygon is 13. The constant C is used to 
adjust the polygon’s scale and orientation. 

Applying this rule to the region of figure 25, regarded as a polygon with interior 
angles of 217 at both A and B, and with an interior angle of 0 at the point Z = 0 corre- 
sponding to the ‘depths’ D of the duct, we obtain 

(63) 
dz nh (2- 1) (Z+ 1) 
a=% z 

The value (nhlin) for the constant C is chosen so that in the upper half Z plane the 
change in z from the left of D to the right (namely, ( -  ni) times the residue of (63) 
at 2 = 0 )  is the duct width nh. The resulting value of z is 

nh 
z =  7 217 [~(zz--1)-lOg(-iZ)] 

t Throughout the ‘mathematical’ sections ($52.1 and 2.2), the operation Re (taking the 
real part) is always written explicitly, rather than being suppressed as in the ‘engineering’ 
sections ($81.1 and 1.2). 
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if the constant of integration is chosen so that the origin z = 0 is at  the centre of the 
duct mouth. Thus, we take the imaginary part of log ( - iZ) as 

arg (-iZ) = T &n for real Z 2 0, (65) 

where therefore x = Rez = _+ *,A; while y = I m z  attains at Z = _+ 1 its maximum 
y = 0. The point at infinity in the 2 plane is mapped on to the point at infinity in the 
z plane. 

In the 2 plane the far field (59) becomes 

fm(Z) = foexp [n(l- 271 (-i2)2n. (68) 

Now we write f (2) as the sum of this far field and a correction which is ‘local’ (vanishing 
a t  2 = CQ) and has imaginary part - Imf,(Z) on the boundary 2 = 0; thus, 

where the imaginary part of the integral, as Z tends to a point on the boundary, tends 
to n times the residue [ - Imfm(2)] of the integrand at 2, = 2. Evidently, the correc- 
tion ensures that the sum f (2) satisfies )c/ = I m  f (2) = 0 on the boundary as required 
by condition (57). 

The value f D  of f(z) in the duct’s ‘depths’ (z+ -iw) corresponding to 2 = 0, where 
fm(Z) = 0, is given by (67) as 

Equation (60) therefore, with (66), gives 

dZ 
n -  2 Ke-ie = 1 wQ exp [n( 1 - 291 ( - iZ)2n - . 

With arg ( - i2) determined by (65), this implies that 

Now, with nZ2 as a new variable X ,  we use the standard factorial-function integral 

s,” e-xxn-ldx = (n - I)!  

(called F(n) in the older books) to obtain finally 

The fact that the right-hand side of (72) is real implies zero phase lag (01 = 0) in 
the duct’s response, as analysed by a local model. The forcing-pressure modification 
factor K is equal, however, not to the value 

obtained by averaging the value of the far-field pressures (59) across the duct mouth, 
but to this value multiplied by the quantity in square brackets; a quantity always 
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FIGURE 26. The lower diagram plots, for different local models, the quantity q, defined so that 
a two-dimensional duct of width nh (where h = wavelength) responds to pressures which 
would be present at a distance qh beyond its mouth if the duct were absent. -, value of p 
for mouth-upwards and mouth-downwards duct ; . . . ’ . , approximation to this given by the 
simple equation (76 ) ;  ---, value of q for mouth-sideways duct. The upper diagram plots, for 
mouth-sideways ducts, the quantity (86).  This specifies pressure fluctuations in the duct in 
terms of the level at which pressure fluctuations of that amplitude would appear if the duct 
were absent, by expressing the height of that level above the duct’s lower lip aa a fraction of 
the duct width. 

greater than 1 for positive n. This is the quantity specified by Stirling’s famous formula 
as asymptotically 

(27rn)) 1 + - + O  - for large n. ( 12n l (31 
As a consequence, a rather good approximation for all positive n is 

(74 )  

a simple expression with practically the same asymptotic behaviour for large n and 
coinciding with the left-hand side a t  n = 0. (Elsewhere, it falls short of the left-hand 
side, but never by as much as 0.05.) 

Essentially, this means that the duct responds to the far-field pressure averaged 
across the duct’s width at a different level y = qh, where 

( 7 6 )  
1 
47r 

q +  - log (2nn+ 1 ) ;  

this is the level where e2ngl* takes the value ( 7 5 ) .  Evidently, the level y = qh is beyond 
the level of the mouth by an amount which for small n is close to the duct’s half- 
width anh, but which increases more slowly for larger n.  It seems physically reasonable 
that the duct of width nh, if considered as a static-pressure tube, is sensitive to the 
pressures a t  such a distance qh beyond its mouth (where for this mouth-upwards duct 
‘beyond’ means ‘above’), averaged across the duct width. 

Numerical vaIues of K were given earlier (table 1 )  and compared (figure 8) with 
values derived from the fully interactive theory of 5 2.2. The local model was shown 
to be sufficiently accurate for a mouth a t  a depth exceeding two duct widths. Here, 
we show also a graph of q against n, derived from (76 )  (see the dotted line in figure 26);  
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with, for comparison (see the full line), the exact value of q = y / h  for which e2nq is 
equal to the quantity in square brackets. 

The corresponding local model for a mouth-downwards duct (see figure 17) will be 
found open to apparently grave convergence difficulties. Ignoring these, however, we 
derive from i t  results that agree still better with calculations ( 3  2.2) by a fully inter- 
active theory, and are sufficiently accurate for a mouth at a depth exceeding one duct 
width. 

The derivation of these results is practically ‘in one line’: the same figure 25 can 
be used, provided it is understood that the vertically upward direction (pointing to- 
wards the free surface) is now ‘down the page’. The far field (59) is then correct with 
A replaced by - A, but the unchanged duct width can be written 

nh = (-n)(-A); (77) 

that is, as - n times the new value of A. We can expect, then, that the conclusion (72) 
for the mouth-upwards local model can be applied with n replaced by - n  to the 
mouth-downwards local model. This gives 

where the well-known identity 

has been used. 
Unlike the corresponding mouth-upwards argument, this one appears mathemat- 

ically unrigorous; especially, since the integral (70) is very far from being convergent 
with n replaced by - n. Also, the answer (78) is vague as regards phase, since ( - 1)” 
could mean either 

n! ( - n) ! = nn/sin nn (79) 

einn or e-inn, giving a = -nn or +nn. (80) 

However, experience shows that many results derived from integral expressions for 
the factorial (or gamma) function continue to be valid after those integrals fail to 
converge. This makes it, perhaps, not too surprising that the fully interactive 
theory does confirm the above conclusions, with, actually, a = - nn as well as 

as an asymptotic limit which for cases of practical interest is rather closely attained 
(figure 18). 

The physical interpretation of the phase lead -a = nn is that the peak forcing 
pressure for a mouth-downwards duct occurs as soon as the wave crest reaches the 
nearest wall of the duct. Note that a mouth-downwards duct denies direct contact 
with the waves to the volume of fluid above its mouth, unlike a mouth-upwards duct, 
which responds most of all to the waves just above its centre. Thus, wave motions 
directly above the mouth are important (growing exponentially with the height y) 
in the mouth-upwards case, but the mouth-downwards duct excludes them. Accord- 
ingly, the strong signal to which the duct responds is that found when the crest 
reaches the duct’s nearest wall, a t  a phase lead -a  = nn relative to when the crest 
reaches the centre of the duct. 
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The value (81) for K is the reciprocal of that quantity in square brackets which 
satisfies the approximate equality (75). Physically, it means that once more the duct 
responds to the value of the far-field pressures at a distance qh ‘ beyond ’ the duct 
mouth, where q is given approximately by the broken line in figure 26, representing 
(76), or more accurately by the full line. The new features are twofold: for the mouth- 
downwards duct, ‘ beyond ’ means ‘ below ’; while, also, the former ‘ averaging across 
the duct width’ is replaced (see above) by taking the value under the duct’s wall 
nearest to the incident waves. For the mouth-downwards case, numerical values of 
K derived from this local model were given earlier (table 2) and compared (figure 18) 
with values derived from the fully interactive theory of 8 2.2. 

Another similar configuration of some interest lends itself especially to a local 
model. Experiments have been done on mouth-sideways ducts (Every, Priddin & 
Prosser 1977). A two-dimensional fully interactive model of such a duct would be 
difficult to work out and, also, physically unsatisfactory; thus, it would need to  
allow transmitted waves with a different (finite-depth) dispersion relationship from 
that of the incident wave; a feature probably absent from a real three-dimensional 
system. On the other hand, the power of a local model for estimating the forcing- 
pressure modification factor in the two cases treated above suggests that it might 
attain that limited aim in the mouth-sideways case. 

We can still use figure 25 for a local model of the mouth-sideways configuration 
provided that the vertically upward direction is taken to the right on the figure. The 
far field is then 

(82) fm(z) = fOe2ni~/Ae2n+/A = f O e 2 ~ ~ / A ,  

representing an incident wave travelling in the - y direction towards the duct mouth 
- $nh < x < &nh, y = 0.  This time, the far field (82) is as if the wavelength in (59) 
were changed to -ih; while the unchanged duct width can be written as the new 
value of h multiplied by in, replacing the n of the mouth-upwards analysis. 

This time, the integral (70) is convergent (if by a somewhat narrow margin!) and 
the result (72) is changed to 

Here, the factor in large round brackets again represents a forcing-pressure modifi- 
cation derived by simply averaging over the duct mouth. On the other hand, it is 
well known that the result (79) with in replacing n gives 

where the real function Q(n) has been tabulated (Fock 1926). It follows that 

a: = Q(n) + n log (rile), K = [(sinh n n ) / n ~ ] &  efnn, (85) 

where the ehnn factor in K comes from the i-in factor in (83). Values of Qn) ,  as well 
as of K ,  and of -a (in degrees), are given in table 3. 

Note that the value of a given by (85) is negative because its negative second term 
is numerically greater than its positive first term. Thus, there is yet again a phase 
lead. I ts  magnitude accords with the idea that the duct is sensitive to pressures a t  a 
certain distance beyond its mouth, where in this instance ‘beyond’ means ‘in the 
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n 0 0-05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

K 1 1.084 1.180 1.289 1.414 1.557 1.721 1,909 2.125 2.371 2.655 
-a 0 9.8" 15.6" 20.0" 23.5'' 26.3" 28.5" 30.5" 32.0" 33.4" 34.5" 

Q(n)  0 0.0288 0.0573 0.0853 0.1123 0.1382 0.1682 0.1858 0.2072 0.2266 0.2441 

TABLE 3 

horizontal direction from which the incident waves are coming). A phase lead -a 
means that the duct is sensitive to pressures a t  a distance qh beyond its mouth, where 
this time q = -a/2n. 

Figure 26 plots the quantity q = -a/2n as a function of n (broken line). The 
mouth-sideways tube is sensitive to pressures a t  a distance qh beyond the duct mouth, 
with q given by this broken line. Note that the corresponding q for mouth-upwards 
and for mouth-downwards ducts is given by the full line, or approximately by the 
dotted line with the very simple equation (76).  The different lines remain rather close 
together; they all predict that ducts of width &A, &A, $ A  or +A respond to pressures 
a t  distances of about 0.5, 0.4, 0.3 or 0.2 duct widths, respectively, beyond the mouth. 

We must ask also whether, in the mouth-sideways case, this sensitivity to the 
pressure a t  a particular distance beyond the mouth is a sensitivity to the pressure 
there averaged over the duct width (as in the mouth-upwards case) or to the pressure 
a t  the position of the duct wall nearest to the incident waves (as in the mouth-downward 
case). The truth for the mouth-sideways case, shown clearly in the expression (85), 
is given by the geometric mean of those two alternatives ! Thus, it is given by the 
geometric mean of (sinh nn)/(nn), a modification factor describing an averaging over 
the duct width, and of enn, a modification factor which converts from the pressure at 
the centre of the mouth to the pressure a t  the duct wall which is uppermost (and, 
therefore, 'nearest to the waves'). 

The top graph in figure 26 gives the numerical significance of the result (85) for K 
in a different form. We can specify the amplitude Kp,, of the forcing-pressure fluctu- 
ations in terms of the level a t  which the incident wave would exhibit pressure fluctu- 
ations of that amplitude if the duct were absent. The quantity plotted is the height 
of that level above the duct's lower wall, expressed as a fraction 

8 + (2nn)-l log K (86) 

of the duct width nh. The graph implies that the amplitude of the forcing pressures 
is equal to the pressure amplitude in the undisturbed incident wave a t  a level which 
varies from 75 to 81% of the duct width above the duct's lower wall as n increases 
from 0 to 0.5. 

In the light of this result we should not, perhaps, rule out the possibility that sub- 
merged resonant ducts with mouth-sideways intakes might respond usefully to 
incident swell. For a given depth of submergence of the duct's upper wall, fixed 
primarily by considerations of seaworthiness, the pressures to which the duct would 
respond might be those corresponding to a depth greater by a mere 25-19% of the 
duct width. One can imagine duct designs that might give a very substantial resonant 
response at such pressures. Nevertheless, we cannot feel the same degree of confidence 
in such conclusions from a purely local theory as we can in inferences from the fully 
interactive theories of § 2.2. 
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We end this section by briefly developing one more local theory of a system too 
complicated for a fully interactive theory to be possible. This is the case of a mouth- 
upwards duct with lips so rounded that it can be called a bell-mouth. Considerations 
of reducing frictional damping suggest ( 5  1.2) the importance of fitting bell-mouths to 
ducts, so it is interesting to inquire how the forcing-pressure modification factor K 
will be affected if such a bell-mouth is fitted. 

The necessary modifications to the two-dimensional mouth-upwards local theory 
based on the conformal mapping (64) are very simple. We add a real constant, (nhln) W ,  
to the derivative (63) of the mapping so that it becomes 

dz nh 2 2 - 1  

dZ in Z 
- = -  ( - +iw) .  

The positive real part added to the previous pure-imaginary value allows the boundary 
in the z plane corresponding to the real Z axis to have, alongside its previous ups and 
downs, a movement to the right which is continuous, except for the discontinuous 
jump of nh corresponding to the pole at Z = 0. Note also that the other singularities 
of the mapping are moved below the real Z axis, to 

2 = f ( I - tW2)+-&W, (88) 

( 8 9 )  

so as to round off the previous sharp lips. The mapping becomes 

z = (nh/in) [&Z2 - I )  - log ( - iZ) + i W Z ] ,  

and the boundary shape in the z plane is given parametrically by the equations 

x = (nh/n) (in sgn Z + W Z ) ,  y = (nh/n) [log 121 + +(I  - 271 (90)  

for real 2. These curves are shown for W = an and in as the bell-mouth shapes, ( b )  
and ( c )  respectively, in figure 24 (compare the sharp-lipped duct a) .  The far field 
( 5 9 )  is 

( 9 1 )  

and we deduce as before that the phase lag ct is zero and that the forcing-pressure 
modification factor K is given as the integral 

fm(Z) = foexp [n( 1 - Z 2  - 2i W Z ) ]  ( - iZ )2n ,  

which is easy to evaluate numerically after expanding it in powers of W .  The results 
are shown in figure 24, for comparison with the results for the sharp-lipped duct 
obtained previously (table 1)  and shown in graph (a) .  

The absolute values of K in figure 24 may not be very significant, since the local 
theory has been found to be only a crude approximation. Nevertheless, the shapes 
of the curves ( b )  and ( c )  for the narrower and wider bell-mouths relative to the pre- 
viously obtained curve (a)  (based on the same theory) for the sharp-lipped duct are 
probably significant. They indicate that, for values of n around 0.2, the use of a bell- 
mouth such as is in any case desirable for minimizing frictional damping should, 
additionally, increase the amplitude of the forcing pressure itself. 
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FIGURE 27. Boundary-value problem, in terms of the  velocity potential @ and stream function @, 
to be solved in the fully interactive theory of the mouth-upwards case. 

2.2. Fully interactive models 

In  this section we develop in detail a fully interactive model for the sharp-lipped, 
mouth-upwards case. The analysis, like all others in this paper, is two-dimensional. 
The motions, assumed irrotational, are calculated exactly except that, a t  the free 
surface, the usual linearized boundary condition is applied. From the calculation, we 
infer several aspects of the duct’s response to an incident wave. These include forcing- 
pressure modification, added mass, and energy absorption, transmission and reflexion. 
Afterwards, we indicate the relatively minor changes in the analysis from which all 
the corresponding information in the mouth-downwards case is similarly derived. 

Figure 27 specifies the mouth-upwards problem to be solved in terms of the velocity 
potential $. The origin is now taken in the undisturbed free surface y = 0 over the 
centre (0,  - h) of the duct mouth. The two vertical lines x = _+ Jnh, y < - h represent 
the duct’s thin walls, on which +/ax = 0. We expect that at the sharp lips A and B 
(x = +_ $nh, y = - h)  the velocity potential will have a square-root singularity, and 
we know from aerofoil theory how the strength of that singularity can be related to 
the real flow around a rounded orifice lip. 

At any time t ,  we define Q as the downwurdJlux (volume Aow per unit breadth per- 
pendicular to the paper) in the duct. The corresponding average vertical velocity 
across the duct width is 

We take 

in the ‘depths’ D of the duct; that is, far enough inside it for the vertical velocity 
(93) to have become uniform. Here, q5D represents the duct’s response in terms of all 
features of $ other than that which would be associated with an average flow velocity 
(93) distributed uniformly between (2, y) and (x, - h). From (94) we can obtain the 
excess pressure in the depths of the duct as -pa$/at.  

At the free surface, the linearized boundary condition for motions with radian 
frequency w is applied. We write this as 

a$/ay = -Q/nh .  (93) 

(94) 9 + (Qlnh) (Y + h) -+ $D 

a$/ay = ( % / A )  $ on y = 0, (95) 
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FIGURE 28. Boundary-value problem, in terms of the complex potential f and the auxiliary 
function E‘, t o  be solved in the complex z plane in the mouth-upwards case. 

where we express the wavenumber 
(27rlh) = w2/g 

in terms of wavelength because the present analysis, like that of $2.1, involves the 
ratio n of duct width to wavelength as a frequently occurring exponent. 

Far to the right (x + + co) and to the left ( x  + - co) of the duct we take 

) + 0  as x + + c o ,  (97) $ - Re (f* e--2nidA e2dA 

so that $ tends to undisturbed sinusoidal-wave solutions. Later, we interpret f- as 
the combination of incident and reflected waves 

f- = fIeiWt+fRe-iwt (98) 

f+ = fTeiwt (99) 

(travelling to  the right and to the left, respectively) andf, as the transmitted wave 

(travelling to the right); here, f l ,  fR and f T  are complex amplitudes. The absence of 
any e-iwt term in f, expresses the radiation condition that the only energy ‘coming 
in from infinity’ is that in the incident wave. 

We can expect that, at any time t ,  the above conditions determine uniquely a 
solution $ of Laplace’s equation V2$ = 0 in terms of three real quantities; that is, 
Q and the real and imaginary parts of the incident wave freiWt. Later, we use assump- 
tions about the internal duct impedance associated with the dynamics of duct motions 
to relate Q to q5D and, hence, to derive a solution in terms of fI alone. 

If @ is the stream function, satisfying 

because the downward flux between these two streamlines is Q .  Then the complex 
potential 

$ + i @ = f ( x + i y )  = f (2)  
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is an analytic function of z = x+iy,  for which (100) are the Cauchy-Riemann 
equations, and satisfies conditions set out in figure 28.  In  particular, 

f- (i&/nh) (z + ih) - #y, + 0 (103) 

in the depths of the duct. Also, 

f - f j , e - -$niz lh  + 0 as z -+ 00. (104) 

Furthermore, an auxiliary function 

satisfies boundary conditions that are also specified on figure 28.  The free-surface 
condition (95) becomes 

while (104) gives 
R e P = O  on y = O ,  (106) 

F + O  as z + & c o .  (107) 

In the depths of the channel, by (103), 

F + (&/%A) + ( % / A )  [ f i D  + (i&/nh) ( x  + ih)] -+ 0. (108) 

On the duct walls, where @ satisfies (101), the imaginary part a@/ay- (2n$/A) of F 
satisfies 

I m F =  T(.;rr&/A) on x =  kinh, y <  -h. (109) 

At the orifice lips z = k &nA -ih, the square-root singularitier o f f  imply inverse- 
square-root singularities of F .  

The straightforward boundary conditions (106) and (109) for F enable it to be 
determined as a simple algebraic function (see (126) below). Then, to derive f (and 
hence #) from it, we must solve (105) as a first-order linear differential equation with 
constant coefficients. Using the integrating factor eznizlA and the forms (104) and (107) 
off and F at x = 5 co, we obtain the two alternative results 

f ( z )  e2niZ’A = ff - i l 2  ~ ( 2 , )  exp ( 2 7 r i x 1 / ~ )  dzl, (110) 
f r n  

where either the upper or lower signs may be used. 
On the other hand, when we have found a form of F whose imaginary part 

a$/@/ - (Zn$/4 

satisfies (log), we cannot be sure that 4 itself will satisfy (101). It is, indeed, important 
to note that the boundary value of @ could differ from (101) by any multiple of 
eanylA without disturbing the correctness of (109). However, we can use (110) to  
express the condition that no such deviation is present, by considering the limiting 
form of the left-hand side as z + -im; that is, in the depths D of the duct. These are 
where (103) represents the true limiting form off, and where any non-zero multiple of 
eany/A in a boundary value of @ would require f to deviate from that limiting form by 
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FIQURE 29. The three complex planes (z plane, 2 plane and plane) 
used in the mouth-upwards cam. 

a non-zero multiple of e-znizlA. In  that case, the left-hand side of ( 1  10) would deviate 
by a non-zero constant from the value given by the limiting property (103). We 
express the fact that no such deviation occurs by requiring that 

I ff = lim ( [q5D + (i&/nh) (z  + ih )]  e2niz/A + i J Z  P(zl)  exp (27rizJh) dz, . (1  11) 
z - t - i m  f m  

The above arguments prove (1  11)  rigorously provided that n < 4. This is because, 
if an analytic function (103) has imaginary part zero on two parallel lines x = f gnh, 
y < - h and takes values between them which tend to zero as y + - 00, then those 
values are O(enulnA). This result is expected physically from the rate of decay of the 
lowest eigenfunction of the problem, proportional to cos (nx lnh )  ; while, mathemat- 
ically, it is guaranteed by the Phragmh-Lindelof theorem. Accordingly, even when 
the left-hand side of (103) is multiplied by eZnizlA, its value must still tend to zero as 
assumed in (1  11)  provided only that n < 4. It is, in fact, relatively straightforward to 
extend the results derived below to values of n 2 4 but we save space by omitting 
such an analysis because ducts promising for practical applications all satisfy n < 4. 

As in 92.1, a Schwarz-Christoffel mapping (62) from the z plane to the upper half 
2 plane is the key to the problem’s solution (figure 29). The z plane is, as before, a 
polygon with interior angles of 277 at both A and B (corresponding to Z = - 1 a.nd + 1)  
and an interior angle of 0 at the point D (corresponding to Z = 0). This time, however, 
there are two additional vertices at  infinity; namely, C and E (corresponding to Z = - a 
and +a,  where a > 1 ) ;  each with a negative ‘interior angle’ -477 since the edges 
diverge instead of converging towards the vertex. It follows that 

dz nh (2- 1)  (Z+ 1 )  a3 
dZ - z z (a-  Z)4 (a+ Z)Q ‘ 
-- 

Here, the right-hand factor, modifying the previous factor (63), tends to 1 as Z + 0; 
accordingly, it does not disturb the correctness of the left-hand constant factor 
nh/in, chosen so as to make the duct width nh. 
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The resulting value of z is 

if the constant of integration is chosen this time so that the origin z = 0 corresponds 
to the point at  infinity in the Z plane. Furthermore, the mapping is symmetrical, in 
that the positive imaginary axis, where - iZ is positive, corresponds to the negative 
imaginary axis, where iz is positive, provided that both the many-valued functions 
of Z in square brackets are interpreted as the branches positive where - iZ is positive. 
Note also that the value of a must be determined by the condition that Im z = - h 
at Z = -t 1, giving 

h = n [a(a2-l)t+:log 

It will often prove convenient to use the auxiliary variable 

5 = ./(a2 - 22)) (115) 

which fills the right-hand half-plane cut from + 1 to +a (figure 29). In  terms of y, 
(1 13) becomes 

which gives 

z = -  in [ (a 2-1)c+*log- 3 , 
In  (1  16), the function 

1+c  log - 
1 - 5  

is the branch specified above as positive when - iZ is positive. In  the 5 plane, then, it 
is positive on HD (where 0 < 5 < 1) .  By contrast, as 1 - 5  moves round the branch- 
point D at the tip of the cut, the function (1  18) acquires an imaginary part 

+ n  on DBE, but -n on DAC; (119) 

that is, on the upper and lower edges of the cut, respectively. (These results, when 
applied in (116), make the real part of z equal to + gnh on DBE and - inh on DAC, 
of course.) By contrast, the function ( 1  18) has real part zero on EHC (where 5 is pure 
imaginary). 

The boundary conditions on F itself are similar to these. By (log),  its imaginary 
part is 

while by (106) its real part is zero on EHC. Combining (119) and (120), we deduce 
that the modified function Fm, defined as 

-(n&/h) on DBE, but +(..&/A) on DAC; (120) 

Fm = 5 ( F+- : log- :::), 
is purely real on the whole boundary; on DBE and DAC as the product of two real 
quantities, and on EHC as the product of two pure imaginary quantities. 

A function Fm with this property is easily determined; especially, if we look for its 
value in the Z plane whose boundary (figure 29) is simply the real axis. We are given, 
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essentially, that Fm is analytic in the upper half Z plane and real on the real Z axis. 
Therefore, it  can be continued by the Schwarz reflexion principle (which defines F,(Z) 
in the lower half-plane as [Fm(Z*)]*, where the star means complex conjugate), to 
give a function analytic in the whole Z plane. 

As 121 -+ co (that is, at  the point H )  we have C-+ 0,  so that by (121) )  since F is 
bounded near an ordinary point H (where z = 0 )  of the free surface, Fm -+ 0. This 
suggests the awkward possibility that Fnl may be a function having no singularities 
anywhere in the whole Z plane and tending to zero as 121 -+ 00. Such a function, of 
course, would be identically zero. 

At this stage, however, it  is necessary to remember that F ,  as defined by (105)) has 
an inverse-square-root singularity at  the points A and B in the z plane where f has 
square-root singularities (that is, at z = k inh - ih).  Since these correspond to points 
Z = f 1 where the derivative (1 1 2 )  of the mapping vanishes, the said inverse-square- 
root singularities in the z plane become simple poles in the Z plane; in fact, 

( z  T inh + ih)-* becomes proportional to (2 T 1)-l as Z -+ & 1. (122)  

It follows that Fm is an analytic function in the whole Z plane except for simple poles 
at  2 = k 1. Also, 

by (115) and ( 1 2 1 ) .  Finally, then, the function ( Z z -  1 )  Fnl(Z) has no singularities at  
all in the complex plane, and satisfies 

Fm = O(lZl-l) as IZ] -+ 00 (123) 

( Z z -  l )Fm(Z)  = O( lZJ )  as (21 -+ co. (124) 

(125)  

where Fo and Fl are constants and the factor 27r/h has been inserted purely for reasons 
of convenience. Evidently, the constants Fo and Fl must be real since (125) is given 
to be real on the real Z axis. By (121) ,  the general solution for F is therefore 

Such a function can only be a first-order polynomial, which we write 

(2'- 1 )  Fm(Z) = ( % / A )  (Fo+FIZ) 

2 n F  F Z  Q 1 + C  F = -  0 + 1  -- log - 
h (Z2-1)C h 1 - C '  

depending on three real quantities F,, Fl and Q as foreshadowed earlier on physical 
grounds. 

One of these quantities, Fo, is closely related to the quantity (s, which we particu- 
larly wish to calculate. This is because the left-hand side of (108) tends to zero in 
the depths of the duct, where Z -+ 0 and c-+ I and z is giveh by (116). Equation 
(126)  for F implies, therefore, that the limit as C + 1 of 

Fo--log-+-+- 2n Q 1 + c  Q 27r 
h h 1-5 nh h 

-- 

(where the first part is the limiting form of the first two terms in (108), and the second 
part is the limiting form of the last term) is zero. Therefore, since (127)  is actually 
independent of 6, it  must be identically zero, giving 

h a2-1 1 
nh 7r 2nn' 

(sD = Fo+bQ, where b = 
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For given Q,  then, the value of Fo determines the required quantity $D specifying the 
velocity potential (94) (and hence also the excess pressure -p+/at)  in the depths of 
the channel. Later, this relationship, together with a value of the duct’s ‘internal 
impedance’ (specifying the dynamics of motions within it), is used to determine the 
value of Q and hence the rate of energy absorption. 

In  the meantime, we note that the second constant Fl (the coefficient of an anti- 
symmetric part of F) derives its significance mainly from its ratio to Fo (the coefficient 
of a symmetric part). Indeed, (126) implies that the residues of F at the poles 2 = & 1 
are in the ratio 

(Fo+F1)/(4-&). (129) 

By (122), then, this is the ratio between the strengths of the inverse-square-root 
singularities of F(z )  at the corresponding points z = & nh - ih. This in turn, by (105)) 
is the ratio of the square-root singularities off ( z )  a t  those points; strengths which 
give a measure of the strengths of the real flows around any rounded orifice lips such 
as may be represented by the sharp lips of figure 27. Since the strengths of those flows 
are in the ratio (129), we can say that the strengths of the symmetric and antisym- 
metric elements in the lip motions (see figure 9) are in the ratio Fo/Fl. 

We now obtain equations from which the quantities Fo, Fl and Q can be related to 
the behaviour of the waves a t  large distances; that is, to f-, representing by (98) the 
incident and reflected waves, and to f,, representing the transmitted waves. We shall 
find that these relations determine all three constants, and also the transmitted and 
reflected waves, when both the incident wave and the internal duct impedance are 
given. 

We start from (1 11);  note that the limiting value of the term in square brackets 
appeared later, also in square brackets, as part of a quantity (127) whose limit is zero. 
Therefore, the term in square brackets in (1  11)  can be replaced by 

Also, by (1  16) we can write 

e2niz/A = exp [2n(a2 - 1) 53 
in terms of 6. Furthermore, by (115) we have 

since 6 is positive when - iZ is positive. In  terms of 5, then, (126) gives 

and the integral in (1 11)  runs from f ico to 5 with dz given by (1 17). Equation (1  11) 
then becomes 

where furthermore the substitutions (131) and (133) must be made. 
As it stands, equation (134) is not one where the upper limit in the integral can 
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simply be replaced by 1, since the resulting integral would be divergent. However, 
a rearrangement analogous to integration by parts allows us to replace (134) by a 
single integral from f ico to 1,  We replace the term outside the integral (the first line 
of the expression in braces) by the integral of its derivative, 

Then the limit (134), with its first line replaced by (135), becomes a convergent inte- 
gral from f ioo to 1, for three reasons as follows. The logarithmic term appearing [see 
(133)] in F and so also in the second line of (134) is cancelled by the logarithmic term 
in (135); the first integral on the right-hand side of (135) is cancelled in the second such 
integral by the product of the - & / 2 m  term in square brackets and that part of the 
factor multiplying it which tends to infinity as -+ 1 ; and the similar product of the 
Fo term in square brackets with the factor multiplying it which tends to infinity as 
6 -+ 1 cancels the contribution made by the Fo term in expression (133) for F to the 
part of the second line in (134) which tends to infinity as 6 -+ 1. 

We readily check, in fact, that the convergent integral from f ico to 1 by which 
(1 34) can be thus replaced may be written as 

f* = Fo(Ao T iB0) - iFl(A, T iBJ - Q(A2T iBJ, (136) 

where the constants A ,  and B, are defined (in such a way that all are later found to 
be positive for 0 < n < &) in terms of the integrals 

A ,  T iB, = 

A2TiB2 = 

(137a) 

(137b) 

(137c) 



302 J .  Lighthill 

Here, the variable 
s = 4n(a2- 1) 

has been introduced because it turns out that each of these integrals can be expressed 
quite simply in terms of standard confluent hypergeometric functions of s. 

In fact, the integrands in (137) are all regular in the whole < plane, provided that 
it is cut not only from + 1 to + 00 but also from - 00 to - 1 (figure 30). The integrals 
can therefore be evaluated by path deformations as follows: 

a pair of sums with the common element 

Now, 

can be evaluated, by expanding e&dC+l) in series, as 

where the integral by itself has the well-known beta-function form 

P ( n + r -  l ) !  ( - n ) ! / r ! .  (143) 

Using this in (142) with ( - a ) !  replaced in terms of n! by (79), the whole expression 
(142) becomes 

n m sr ( n + r - l ) !  x- - e-ts 
sinnn ( T ! ) ~  ( % - I ) !  ' 

Accordingly, 

where we shall use M,(s) as a compact notation for the confluent hypergeometric 
series 

(146) 
sr M,(s) = M ( n ,  1, s) = x - n(n+ 1) ... ( n + r -  l) ,  

,.=O ( r! )2  

also called ,Fl(n; 1; s). Texts on special functions, such as Jeffreys & Jeffreys (1950), 
define this as one standard solution of the differential equation 

(147) 

The somewhat surprising importance of the fact, that the quantity M,(s) appearing 
in expressions (137) for the constants A ,  and B, satisfies this differential equation 
with respect to a parameter s defined by (138), emerges later [see (192)J. 

Asymptotically, the solution (146) of (147) is known to satisfy 

M,(s) N eSsm-l/(n- i)! as s 3 m. (148) 
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We shall use also a second solution Un(s) of (147), called U(n, 1, s)/( - n)! by Jeffreys & 
Jeffreys (1950). This solution tends to zero asymptotically, satisfying 

Un(s) N s-n/( - n)! as s +- 00. (149) , 

Like Mn(s), it can be written as a series convergent for all s; namely, 

sinnn O0 sr U,(s) = - -n(n+l) ... (n+r-1)[2F(r) -F(n+r- l ) - logs]  (150) 
n t - 0  ( T ! ) 2  

where F(r )  stands for d (logr!)/dr; both series (146) and (150) are computed very 
readily indeed. 

The importance of Un(s) is that it has the following integral expression closely 
parallel to (145): 

n -- e-48 Un(s), 
-1-6 d5 Ji: e+sg( v) -1-15 - sin nn 

where the term in large round brackets is real and positive on the path of integration. 
By (140) and (151), 

where the term in large round brackets in (152) is equal on the lower edge LG of the 
cut to e-inn times the corresponding term in (151). The similar integral (139) from ico 

c * 
to 1 involves J instead of J and therefore is as in (152) but with e+inn replacing 

KG LB 
e-inn; in short, it  is the complex conjugate of (152). 

of integral occurring in (137): 
Applying the operator (d lds)  + 8 to (152) gives us the value of the one other type 

with the integral from ico to 1 again given by the complex conjugate. Using (152) 
and (153) twice each in (137), we obtain 

n 
C, = A ,  + iB, = - e-+${sM;(s) + 2nlMn(s) - e-inn[sUh(s) + 2nUn(s)]}, (1544  

sin nn 

(154b) 

(154c) 

for the constants C, = A,+iB, with the lower sign, the others being of course their 
complex conjugates C$ = A ,  - iB,. 

To sum up, the constants C, have the readily computable values (154) for use in 
(136), which with (98) and (99) can be written as 

fIeiwt+fRe-iwt = f- = F,C,-iFlCl-QC2 (155) 

freiwt= f+ = F,C,*-iFICT-QC,* (156) 

in terms of the incident and reflected waves, and as 
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in terms of the transmitted wave. Here, the quantities Fo, Fl and Q are real. Solution 
of these equations can be facilitated by taking the complex conjugate of (156), to 
give 

By adding or subtracting (155) and (157) we can obtain the part of Fo and Fl pro- 
portional to eiot, in terms of the incident wave fz alone together with the corresponding 
part of Q. 

From this point onwards, we use subscript a for ‘complex amplitude’ so that, for 
example, 

while Foa and Fla are defined similarly. Subtracting (157) from (155) gives 

(157) f ; e - ” w t  = f+ * = FoCo + iFl Cl - &Cz. 

Q = Re (Qaeht) = #(Qae*wt+Q2e-tOt), 

f--f$ = - 2iF1C1 = -iCl(FlaeiWt+ F,*,e-iwt). 

(158) 

(159) 

From the terms in eiWt (which on the left-hand side of (159) involve the incident wave 
alone) we deduce that 

the complex amplitude of the antisymmetric mode of orifice lip motion is iCrl times 
the complex amplitude of the incident wave. 

Results of greater practical interest are obtained by adding (155) and (157) to give 

(161) 

F1, = iCil fz: ( 160) 

f-+f$ = 2(FoCo-QC,) = Co(Foae~Wwt+F*,ae-iwt)-C2(&aeiwt+Q,*e-iwt). 

Now, from the terms in eiwt, we obtain 

Foa = cglfz + (Q2Qi-l) &a* 

$=a = Ci-lfZ + (C,Qi-l+ b )  &a, 

(162) 

(163) 

With (128) which relates Fo to do, this gives an equation 

expressing the complex amplitude of the fluctuations of velocity potential in the 
depths of the duct as a linear combination of the complex amplitudes of the incident 
wave and of the downward flux Q. 

From the f i s t  term in (163), we derive the pressure modification factor Ke-iu. 
This is defined in terms of the value do which the velocity potential in the incident 
wave would take at the centre (0, - h) of the mouth if the duct were absent. By (97) 
and (98), $o can be written in the form 

$o = Re($,,,eiWt) with $oa = fie-2nhJA. ( 164) 

By (61), (163) and (164), the pressure modification factor can be calculated as the 
ratio of complex amplitudes of pressure fluctuations in the absence of duct flow to 
those in the absence of any duct a t  all: 

Values of K and a calculated from this formula were given in figures 6, 7, 8 and 10. 

limit as h/nh becomes large, when (1 14) implies that a also is large, with 
The result (165) agrees with the simple conclusion (72) from a local model in the 

nh/nh = a2 - # +log (2a) + O( 1) (166) 
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aa a -t 00. Then the asymptotic forms (148) and (149) show that, in the expression 
(154a) for C,, the U, terms arenegligible and the dominant term for large s = 4n(az- 1) 
is 

Accordingly, (165) gives 

exp[2n(a2 -~ )+2n log(2a ) -2n(a~-1 ) ]  = - n! (168) 
n! 

N- 

(4na2)” (n/eP 

exactly as in (72). Figure 8 has shown already that this limiting result is sufficiently 
accurate whenever h/nh  > 2. 

Equation (163) when the flux is non-zero implies with (94) an expression for the 
potential 4 in the depths of the duct. Its complex amplitude 4, can be written as 

4, = 4 D a  - (Q,/nh) (Y + h) = C 2 f I  - (Q,/nh) (Y + h - 0 - QQ,. (169) 

Here, the values of I and D, are evident from (163): 

I = nh[Re (C2Cc1) + b], 0, = - Im (C2Cc1). (170) 

Physically, I is an inertial term, representing an effective ‘added length’ of duct 
above the mouth; while 0, (which will be found to be necessarily positive) is a resistive 
term to be identified later as the radiation damping coefficient. 

Using (128) for b, we can write the ratio of the added length 1 to the duct width nh as 

The term in braces is of interest as representing the added-mass effect calculated 
for a much simpler problem: the case when gravity is neglected but the constant- 
pressure condition is applied on the surface y = 0. Then the properties of the function 
(118) imply that all the conditions for the complex potential f with flux Q in the 
duct are satisfied by 

Q I + <  f = - log -, 
2n 1-r: ” 

which by (1 16) is asymptotically 

p = (&/GI) [CZ - (h - Z ) ]  (173) 

in the depths (5  + 1) of the duct, with 

This expression in braces in (171) and (174) is that plotted against h/nh  in figure 15 
as the curve ‘without gravity effects’. Equations (154) show, furthermore, that the 
term in square brackets in (171) can be written in a form 

I1 FLY 91 
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which may be expected (since U, is typically much smaller than a,) to have positive 
real part, and does so for all cases which the author has calculated (figure 15). Thus 
the effects of gravity in limiting the displacement of the free surface produce a re- 
duction in added mass. 

By analogy with (165) we write also 

Kl  exp ( - ia,) = exp (2nh/h) (711. 

Fla = K ,  exp [i(&r - al)] fi exp ( - 2nh/h). 

(176) 

(177) 

This, by (160), means that 

Here, Fla is the complex amplitude of the antisymmetric lip motions. These tend to 
respond, not to the crest itself as do the symmetric motions, but to the horizontal 
acceleration peak which precedes the crest by a phase lead of in. Then thy phase 
difference a1 represents a (rather small) lag in response to that peak horizontal 
acceleration. 

Equation (177) implies that the ratio Kl /K ,  plotted in figure 9, is a ratio, in the 
zero-flux case (165), of the real amplitudes leal and IF,,,l of antisymmetric and 
symmetric lip motions [see the discussion following (129)]. These, however, are nearly 
90" out of phase (the exact phase difference being $n+a-a,). Note that flux in the 
duct would leave Fl, unaltered but, according to (162), would typically increase 
IFoa] so that Kl /K  can be described as a sort of maximum asymmetry ratio. 

We next determine the complex amplitudes f T  and fE of the transmitted and re- 
flected waves. Eliminating F from (156) and (157) we obtain 

(cif++cTf,*) = 3(CoCT+C,*Ci)-Q(CiC,*+C:C2), (178) 

where all three bracketed expressions are real. Equation (178) means that the real 
part of 

vanishes for all t ,  which is possible for a multiple of eiwt only if it is identically zero. 
Therefore, f T  is given by 

2C1 f eiut - Foa eiwt(Co Cf + C,* C,) - Q, eiwt(Cl C,* + CT C2) (179) 

2C1 fT = F,,(C,C,*+C,*C~)-Q,(C,C,*+C,*C~). (180) 

fR+f$ = COF&,-CC,Q:, (181) 

(182)  

Also, from the terms in e-iut in (161), we have 

and multiplying this by 2C; and using (180) for f T  we deduce 

2C,* fn = F$,(COCf - C,* C1) - Qx(C:C2 - ClC,*). 

An important check on the whole analysis can now be made. The energyjux (per 
unit crest length) in the incident wave can be written 

a P 4 f I l a ;  (183) 

this is the group velocity (half the phase velocity) multiplied by the wave energy per 
unit horizontal area. We expect the total rate E of energy absorption by the duct, 
per unit crest length, to be the part of the incident wave energy (183) that is neither 
transmitted nor reflected: 

= b w ( l f I 1 2 -  ~ . f T ' ~ z -  lfR12). (184) 
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From (162)) (180) and (182) we can rewrite this as 

41C112E = ~ P W { ~ C ~ C ~ ( F ~ ~ / ' , , C ~ - Q , C ~ )  (F&Co*-QtC2*) 

- [(Foa Qo - Qu CA C? + (Feu C,* - Qu C,* ) Cil [(Fzu C,* - Qt C2* 1 Ci + (FZu Co - Qt (72) C:I 
- [ ( G u  Co - Q,* Cz) Cf - (F& C,* - Q*, C,* ) Cil [(Foa CO* - Qucg 1 Ci - (Feu Co - Qu Cz) C:II 

(185) 

where in each of the last two lines the first factor in square brackets is the right-hand 
side of (180) or (182) respectively, and the second factor is its complex conjugate. 
The terms in CICl and Cf C? in the last two lines cancel, leaving only terms with the 
factor C,C? = ~Cl~z,  giving 

E = +EPW(Z(&CO-Q~C~) (FZuCt - Q Z C , * ) - ~ ( F O ~ C , Y - Q & ~ C ~ * ~  (FZaCo- QZCAI 

= QPW(FO, Qt -FZa &a) (C,* cz - CoC,* 1. (186) 

We compare this with the rate of working by duct pressures, with complex amplitude 

P a  = - P i W 4 , ,  (187) 

driving a flux with complex amplitude Q,. This form of the rate E of energy absorption 
by the duct is 

E = &(PuQX+PZ&a) = - & P i 4 4 a Q X - 4 Z Q u ) ,  (188) 
which in turn gives 

since, by (163) and (128), 4, differs from Fou by a real multiple of Q,; namely, 

4a-Foa = [ 4 D a - ( Q , / n A )  ( ~ + h ) l - ( 4 , , + b Q u )  = - (&, /%A)  ( ~ + h + b n A ) .  

E =  - 4 p  i4Fo,QX -p,*uQJ (189) 

(190) 

To complete the check that the rate (189) of energy absorption by the duct is 
equal to the baIance (186) of incident wave energy flux that is neither transmitted nor 
reflected, we must prove that 

Actually, we calculate from (154) that 

c,*cz-coc,* = - 2 i .  (191) 

which is not obviously a constant ! However, we complete the proof by recalling that, 
for any two solutions U,(s) and Jf,(s) of the second-order differential equation (147), 
the Wronskian 

un(s) JfA(s) - uA(s) J f n ( S )  (193) 

is exactly proportional to s-les (that is, to the exponential of minus the integrated 
coefficient of dwlds). We may find the constant of proportionality from the asymptotic 
forms (148) and (149).  They show that (193) is asymptotic (as s + 00) to 

sn-1 sin nn 
- e s - -  -- s-lea, 
( - n ) !  ( n - l ) !  n 

9-a 

SO that this must be its exact value for all s, verifying the energy balance requirement 
(191). 

11-2 
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fz and Q,, by substituting for Po, from (162). This gives 
It is interesting to write the expression (182) for the reflected wave f R  in terms of 

Using (176) in the first term and (191) in the second and (165) in both, we can write 
this as 

Similarly, from (180) we find 

fR = f:i exp [ i (a  + aJ] sin (a - a,) + Q Z  i exp (ia) K e-2Hh/k. 

fT = fz exp [ - i(a + al)] cos (a - a,) - &,i exp ( - ia) K e-gnhIh.  

(196) 

(197) 

Equations (196) and (197) show that, when there is zero flux in the duct, the pro- 
portions of incident energy that are reflected and transmitted are sin2 (a - a,), as 
stated in (19), and cos2 (a - a,), respectively. These proportions add up to 1 because 
there is no energy absorption in that case. 

There is also interest in the case f I  = 0 of zero incident wave, when any waves 
(1 96) and (197) must be generated by motions in the duct powered by some internal 
source of energy. Then we see that fR and f T  are complex conjugates of each other, 
implying symmetrical wave generation. The energy flux in the waves is 

(198) $PO( IfRl + lfTl 2, = &PW] Qu) Or 

D, = ( K e - 2 n h I A ) 2  = \ Q o l - 2 .  

where D, is the radiation damping coefficient, given by ( 1  96) and (197) as 

(199) 

Equation (191) is easily used to show that our definitions (170) and (199) of D, agree. 
The general check on energy balance, equating the values of energy absorption E 
calculated as (184)  and as (188), shows that E is negative in this case, and that the 
quantity - E represents wave-energy output resulting from internal pressures driving 
the duct motions. 

This may be independently verified: by (169) with fz = 0, the internal pressure in 
the duct has complex amplitude 

p ,  = -piw$, = pwQ,[i(y+h-Z)/(nh)-D,]. (200) 

The part 90" out of phase with the flux Q, does no work, but the part - pwQ, D, in 
antiphase with Q, does work at  the rate (198). 

The limiting case n + 0 is of some interest. Then (137a) shows that 

1 
C, -+ gse#scdc = e*S, 

s = 4n(a2- 1 )  + 4nh/h. 
while (1 38) and (1  14) give 

Therefore, by (165), a -+ 0 and K + 1; in words, a narrow duct records the pressure 
that would be found a t  the level of its mouth if the duct were absent. Equation (137 b )  
also shows that C, -+ 0,  but we need the value of 

1 
lim (n-lC,) = 2a (1 - [2)-+e+scdc = 2a [nIo(&s) + iKo(&s)]. (203) 
n + O  1- i m  
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This representation in terms of Bessel functions (Watson 1944, art. 6.22) shows, by 
(176), that 

Therefore, the reflexion coefficient R = sin2 (a - a,) for zero duct flow tends to the 
value 

a, -+ tan-1 [Ko(~s ) /~ Io (&s) ] .  (204) 

{ 1 + [?TI0(27TFu/h)/K0(27T~/h)l2}-l (205) 

which was given by Ursell (1947), following Dean (1945)) for the case of a single sub- 
merged vertical barrier. 

At  a rather lower, but not negligible, level of interest is the limiting case n -+ *, 
when it is easy to show from (137) that A ,  -+ 00 while B, remains finite. By (176) 
this makes K, -+ 0 (see figure 9) and a1 + 0 (see figure 10). On the other hand, C, has 
by (137) a finite limit as n + $, which can again (if desired) be expressed in terms of 
Bessel functions, although it can be calculated very readily from (154) as was done in 
obtaining the values in figures 7 and 10. 

The fully interactive model for the mouth-upwards case, described above in some 
detail, gives results that are by no means unique even when the incident wave fx is 
&ed, 6ec.ausc <key <~!Cude tke extya &qea 4 &ads- ~aq~e.sa=<ad Sy a. Cn Caot, 
the solution becomes unique only when the internal duct dynamics are specified. 

Any such specification, if linear, can be represented by an internal impedance Z 
relating the complex amplitude of a duct reference pressure p D  to the complex ampli- 
tude of the flux Q. We may take that reference pressure pD as the value in the depths 
of the duct extrapolated linearly back to the mouth, just as $D was defined in (94). 
Then the complex amplitude pDa is   pi^$^^, giving for the impedance 

= PDa/Qu = -PiW$Da/Qu = -PiW(Foib, + bQ,) /Q,  = -piw(X + b ) ,  (206) 

where X = Fou/Qa and, by (128), b is real. Therefore, the rate of energy absorption 
(189) can be written 

E = t(zQ,Q,*+z*QXQ,) = Hbz)  I Q u 1 2  = Bp4Imx)  / & , I 2 ,  (207) 

involving, as must be expected, the real part of the impedance Z and therefore the 
imaginary part of X. Also the energy flux in the incident wave, (183), can be written 
(by (162)) and again using X = Fou/Qu) as 

tP~lcoFou-c2Q,~2 = bJlCOl2 I Q a I 2  Ix-c2c,-112. (208) 

Comparing this with (207), we see that the proportion of the incident wave energy 
(208) which is absorbed is 

2(Im X )  ICol-2 
(Re X -Re C2C,-1)2 + (Im X + ICol-2)2 ' 

where the fact that Im (C2Cc1) = - ICol-z [because of (191)] has again been used. 
The proportion (209) so calculated takes the maximum value + already derived 

for frictionless systems in 3 1.2 by a related method. This maximum is attained when 

R e x  = ReC,C;1, I m X  = ICol-2 = -ImC2C;l, (210) 

where the first equation is the condition for resonance and the second puts the energy 
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absorption rate equal to the external rate of loss of energy by generation of new waves. 
Under these conditions (optimal for linear duct dynamics) 

fT = i(CT/C,) (Q,/C,*) = iexp [i(a - 2a1)] (Ke-2nh/h) &,. (212) 

Similarly, (182) shows that fR is the complex conjugate f;, implying a symmetrical 
re-radiation of that half of the incident wave energy which is not absorbed (a quarter 
of the incident energy being transmitted and a quarter reflected). These results for 
the optimal-absorption regime are characteristic of all symmetrical two-dimensional 
wave-energy-absorption systems (Evans 1976). It must be emphasized, however, 
that such results depend on the assumption that the internal dynamics of the duct is 
linear. When energy extraction is by means of a highly nonlinear device such as an 
‘ overspill ’ system, a more favourable optimum may be possible. 

After describing in detail the fully interactive theory for the mouth-upwards case, 
we can end this paper by quickly deriving all the analogous results for the mouth- 
downwards case. The theory is, indeed, completely identical once we have found the 
new set of equations corresponding to (154), and even the route to that set of equations 
is closely parallel to that already followed. 

Figure 31 specifies the mouth-downwards problem to be solved in terms of the 
velocity potential q5. Here, we take Q as the upward flux in the duct, so that energy 
absorption will depend as before on duct pressures in phase with Q. Thus, (94) is 
replaced by 

$ - (Q/nh) (Y + h) -+ do (213) 

in the ‘depths’ D which now, however, are where y + h becomes large and positive. 
The duct walls are x = rl: &ah, y > -h and all other conditions, (95) to (99), are as 
before. 

Figure 32 specifies the same problem in terms of the complex potential (102) and 
the auxiliary function (105). The changed sense in the flux Q means that now 

Imf = TSQ, I m F  = + ( n Q / h )  on x = +inn,  y 2 -h; (214) 
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A 
z = - t n h - i h  

B 

FIGURE 32. Boundary-value problem, in terms of the complex potential f and the auxiliary 
function F ,  to be solved in the complex z plane in the mouth-downwards cam. 
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FIGURE 33. The three complex planes ( z  plane, 2 plane and 5 plane) used in the mouth-downwards 
case. Dotted line: this illustrates the extended cut, running from 5 = - 1 to 5 = + 1, which 
is applicable when the complete complex g plane is used. 

while in the ‘depths’ 

f+ (i&/nh) (z + ih) - q5D -+ 0, F - (&/nh) + (%/A) [dD - (i&/nh) (z  + ih)] -+ 0.  

Equation (1 10) remains correct, and the condition (1  11)  becomes (215)  

f* = lim ( [$D - (iQ/nh) (z  + ih)] exp (27rizlh) + i F(z,) exp (2niz , /h)  dz, 
Z - P i i W  

(216)  
Figure 33 shows the appropriate Schwarz-Christoffel mapping ( 6 2 )  of the required 

polygon in the z plane which now, in addition to the vertices A ,  B and D with internal 
angles 2n, 27r and 0, has vertices C and E with internal angles + an. This gives 

(217)  
dz nh (2- 1 )  ( Z +  1 )  a 
z=-- i7r z (a - Z)+ (a + 2)t’ 

if C, E correspond to Z = T a ,  respectively. The changed sign in front of (217)  ex- 
presses the fact that the duct width nh, being now the change in z as D is half- 
encircled in the positive sense in the upper half Z plane, is + ni times the residue of 
(217)  at 2 = 0. 



312 J .  Lighthill 

The resulting value of z is 

with the constant of integration chosen this time so that the points at infinity on the 
real axis correspond (figure 33). The value of a such that Im z = - h when 2 = & 1 
satisfies an eauation 

where the changed sign from (1 14) makes the value of a larger (for given h/nh) than 
in the mouth-upwards case. This is the main feature responsible for the asymptotic 
properties corresponding to the local model ($2.1) being reached sooner, as h/nh 
increases, than in the mouth-upwards case. 

The appropriate auxiliary variable 5 is now 

g = (a2 - 22)#/a, (220) 

which fills the right-hand half-plane cut from 0 to 1 (figure 33). Then (218) gives 

It is now the funct,ion 

whose imaginary part has boundary values (1  19) and whose real part is zero on EN- 
and H+C. Next, the boundary values (214) on F give (120) as before, and we conclude 
this time that 

is real on the whole boundary. The same argument as before then demonstrates that 
( 2 2 -  1)  Fm is a first-order polynomial in 2, and thus establishes the solution 

2w F F Z  Q [+l  
h 22-1  h ( -1 '  

F = - [  o +  1 --log - 
- 

where Fo, Fl and Q are real. 
In  the 'depths' where 2 -+ 0 , [ 4  1, the equations (215) and (224) now require that 

(225) 
a2 h 1 
IT nh 2nn 

& = Fo+bQ, where b = --- +-. 
Furthermore, (216) now becomes 
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and, by (221), 

exp (2nizlA) = exp (2nu25) (;; - y- (228) 

The fact that (228) becomes, not infinite, but zero in the 'depths', that is, as [-+ 1, 
eliminates any convergence problem when we take the limit in (226). Nevertheless, 
the same integration by parts as was performed in (134) proves useful in (226) for 
simplifying the form of the integral. Writing the first line of (226) as the integral 

of its derivative and combining it with the second line, we obtain 

exactly as in (136), where now 

(230 a) 

(230b) 

(230c) 

8 = 4m2. (231) 

The integrals (230) are very similar to those in (137) but with a few changes. The 
most important is the replacement of n by - n, just as we found for the corresponding 
local model ($2.1). It is also important that the complex 6 plane is now cut from - 1 
to + 1 (rather than from -a to - 1 and from 1 to  m), owing to the change in sign 
in the term in large round brackets. Finally, there is an additional C factor in the 
second integrand, resulting from the replacement of expression (132) for 2 by 

2 = +ia(C2- l)*. (232) 

The first of these changes means that we must use integral expressions like (146) 
and (151) with n repIaced by - n. On the other hand, the second change means that 
the corresponding integral expressions in (230), with the changed sign for the large 
round bracket, involve the extra factor einn or e-5"" on the new cut's upper or lower 
edges, which now coincide with the range - 1 < 5 < 1 of  the integral (145), but involve 
no such modifying factor in the range -a < 5 < 1 of the integral (151). Finally, the 
last change produces an extra modification in C,. We obtain 

C,,=Ao+iB - e-*3{-e-inn[sML,(s)-2nM-,(s)] n 
O - G  

+sK,(s)  - 2nUVn(s)}, ( 2 3 3 4  
2nna 

cos nn 
C, = A ,  + iB, = - e-*S{e-i(n-4)n [2Mi-,(s) - M4-n(s)] 

- 2 U;-,(S) + q-,(s)}, (233 b) 

(233 c)  
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The presence here of the factor e-inn in the leading terms involving the 2M function, 
instead of in the asymptotically much smaller terms involving the U function as in 
(154), confirms the important difference in phase between the responses of mouth- 
downwards and mouth-upwards ducts, foreshadowed in $2.1.  The values of K and 
a calculated from (165)) with Co given by (233), are plotted in figure 18 and show a 
phase lead -a close to (but slightly exceeding) nn in each case. Asymptotically, the 
value of K tends to the broken-line expression (81), while the phase lead -a tends to 
nn. This is because when h/nh is large (219) makes a also large, with 

nh/nh = a2 - 4 - log (2a) + o( 1 ), (234) 

while (148) and (233) for large s = 4na2 give 

Accordingly, by (165), 

Ke-(= = exp (Znh/h) Cil 
sin nn (n/eIn - exp [%(a2- $)] ( Z U ) - ~ ~  - exp ( - 4s) ( - n )  ! snexp (inn) = - einn, 

nn n! 
(236) 

K -+ (n/e)n/n!, ( -a) + nn (237) 

giving the asymptotic limits 

stated above. 

requires us once more to prove (191); this time, as follows. By (233), 
The necessary check on energy balance then proceeds as in (183) to (190)) and 

(238) 
7l 

C,*C,-C,C; = 2i - se-+[[V,(s)M',(s)- ULn(s)M-.n(s)]; 
sin nn 

which, as required, is equal to - 2i because the Wronskian in square brackets is 

- n-l sin (nn) s-le*. (239) 

The added mass in the mouth-downwards case is derived from the equation (162) 
relating Foa to Qa, with the new values (233) of C,, and C,. This, with the new value 
(225) of b, makes #Da equal to (163) as before. Therefore, in the 'depths' of the duct 
(2 13) gives 

#a = 9 D a  + (Qa/nh) (Y + h) = Ci1fI+ (Qa/nh) (Y + h + I )  - i o r  Qa, 

0, = -Im(C,C,1) = ~ C o ~ - ~ .  

(240) 

with the previous values (170) for the added length I and for the radiation damping 
coefficient 

Accordingly, using (225) for b ,  we have 

(241) 

Here, the term in braces is once more separated out, as the value of l/nh with gravity 
neglected, corresponding to a solution 
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The term in square brackets in (242) can be written in a form 

1 M-,(s) - ein=U-,(s) 
T sML,(s)- 2nM-,(s)-eim9sUl_,(s)- 2nU,(-s)] 
- (244) 

which as with (175) can be expected to have positive real part, and does 80 for all 
cases which the author has calculated. This term represents a level of reduction 
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from the zero-gravity value similar to that found in the mouth-upwards case. A 
major difference between the two cases, however, is that the zero-gravity value 
(term in braces) is far bigger in the mouth-downwards condition. This is why added- 
mass values are considerably larger in the mouth-downwards than in the mouth- 
upwards condition (figures 20 and 14). 

I n  the limiting case n -+ 0, we obtain from (230) and (219) that once more (201) 
and (202) hold, giving a 3 0 and K -+ 1. However, the extra c factor in the integral 
for Cl means that 

1 
lim (n-lCl) = 2a c(cz - l)-t eiSCdc = 2a[K1(Qs) + i7r11(+~)], (245) 
n-+ 0 S-tm 

showing by (176) that for the mouth-downwards case 

lim (a1) = tan-1 [7rll(&)/K1($s)]. 
n - + O  

(246) 

Therefore, as n -+ 0, the reflexion coefficient R = sin2 (a  -a,) for zero duct flow tends 
to the value 

which was given by Ursell (1947) for the case of a single vertical barrier extending 
downwards from the surface to  depth h. 

Figure 34 shows how for each value of hlh the reflexion coefficient increases above 
the value (247) as n increases. These graphs imply that, under typical conditions in 
a two-dimensional mouth-downwards system with zero duct flow, almost all the 
energy is reflected.? On the other hand, when motions in the duct are responding to 
the waves, all the results of (206) to (212) apply. I n  particular, in the condition for 
optimum absorption, half of the incident wave energy is once more absorbed while 
the remainder is symmetrically re-radiated (one-quarter as a reflected, and one- 
quarter as a transmitted, wave). 

For all other aspects of the use of results calculated from two-dimensional fully 
interactive theories, and for the extent to which different results so calculated may 
give reliable indications of the behaviour of three-dimensional systems, see $ 1.2. 
Also, see the end of $1.2 for a highly tentative set of conclusions from these studies. 

(1 + [K,(27rh/h)/7rl,(27rrh/h)I2)-1, (247) 

I am most grateful to Dennis Carey, Brian Count, David Evans, Graeme Knott, 
and Michael Longuet-Higgins for their helpful comments on the materials in this 
paper. 
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